

Lee County Board of County Commissioners
Department of Community Development
Division of Planning
Post Office Box 398
Fort Myers, FL 33902-0398
Telephone: (239) 533-8585
FAX: (239) 485-8319

SEP 23 2008

APPLICATION FOR A COMPREHENSIVE PLAN AMENDMENT

	(To be completed at time of intake)
	DATE REC'D BY: C. F. M.
	APPLICATION FEE #2,500 TIDEMARK NO: <u>OPA 2008-0000</u>
	THE FOLLOWING VERIFIED: Zoning (PD Commissioner District Commissio
	Designation on FLUM GENERAL INTERCHANGE
	(To be completed by Planning Staff)
	Plan Amendment Cycle: Normal Small Scale DRI Emergency
	Request No:
	APPLICANT PLEASE NOTE: Answer all questions completely and accurately. Please print or type responses. If additional space is needed, number and attach additional sheets. The total number of sheets in your application is: Submit 6 copies of the complete application and amendment support documentation, including maps, to the Lee County Division of Planning. Up to 90 additional copies will be required for Local Planning Agency, Board of County Commissioners hearings and the Department of Community Affairs' packages. Staff will notify the applicant prior to each hearing or mail out. I, the undersigned owner or authorized representative, hereby submit this application
	and the attached amendment support documentation. The information and documents provided are complete and accurate to the best of my knowledge.
(DATE SIGNATURE OF OWNER OR AUTHORIZED REPRESENTATIVE
	SIGNATURE OF OWNER OR AUTHORIZED REPRESENTATIVE
	2008-0000

I. APPLICANT/AGENT/OWNER INFORMATION

Miromar Development Corporation,	, a Florida Corporation	
APPLICANT		
10801 Corkscrew Road, Suite 305		
ADDRESS		
Estero	FL	33928
CITY	STATE	ZIP
(239) 390-5100		(239) 390-5120
TELEPHONE NUMBER		FAX NUMBER
Neale Montgomery, Esq., Pavese L	.aw Firm	
AGENT*		
1833 Hendry Street		
ADDRESS		
Fort Myers	FL	33928
CITY	STATE	ZIP
(239) 336-6235		(239) 332-2243
TELEPHONE NUMBER		FAX NUMBER
NOT APPLICABLE- PUBLIC RIGH	IT OF WAY	
OWNER(s) OF RECORD		
ADDRESS		
CITY	STATE	ZIP
TELEPHONE NUMBER		FAX NUMBER

Name, address and qualification of additional planners, architects, engineers, environmental consultants, and other professionals providing information contained in this application.

* This will be the person contacted for all business relative to the application.

2008-00002

COMMUNITY DEVELOPMENT

II. REQUESTED CHANGE (Please see Item 1 for Fee Schedule) A. TYPE: (Check appropriate type) Future Land Use Map Series Amendment Text Amendment (Maps 1 thru 22) List Number(s) of Map(s) to be amended 1. Future Land Use Map amendments require the submittal of a complete list. map, and two sets of mailing labels of all property owners and their mailing addresses, for all property within 500 feet of the perimeter of the subject The list and mailing labels may be obtained from the Property Appraisers office. The map must reference by number or other symbol the names of the surrounding property owners list. The applicant is responsible for the accuracy of the list and map. At least 15 days before the Local Planning Agency (LPA) hearing, the applicant will be responsible for posting signs on the subject property, supplied by the Division of Planning, indicating the action requested, the date of the LPA hearing, and the case number. An affidavit of compliance with the posting requirements must be submitted to the Division of Planning prior to the LPA hearing. The signs must be maintained until after the final Board adoption hearing when a final decision is rendered. B. SUMMARY OF REQUEST (Brief explanation): The request seeks to amend the text of Future Land Use Element Policy 1.3.7 to add a footnote to the designation of Station 230+14 (Miromar Outlet Mall directional median opening) to allow for alternative access improvements in the future, if an analysis demonstrating acceptable operations is submitted to and approved by Lee County Department of Transportation. Miromar has concerns about operational issues, and the solutions mandate an adjustment to station 230+14. III. PROPERTY SIZE AND LOCATION OF AFFECTED PROPERTY SFP 2 3 2008 (for amendments affecting development potential of property) A. Property Location: COMMUNITY DEVELOPMENT

1. Site Address: None Exists. Corkscrew Road between I-75 & Ben Hill Griffin

Lee County Comprehensive Plan Amendment Application Form (05/08)

Page 3 of 12

2. STRAP(s): None Exists

B.	Pro	pperty Information
	Th	is information is not appliable to a text amendment for a footnote.
	To	tal Acreage of Property:
	То	tal Acreage included in Request:
	То	tal Uplands:
	То	tal Wetlands:
	Cu	rrent Zoning: Underlying zoning for road right-of-way is AG-2.
	Cu	rrent Future Land Use Designation: General Interchange
	Are	ea of each Existing Future Land Use Category:
	Ex	isting Land Use: <u>Right of Way</u>
C.	do	ate if the subject property is located in one of the following areas and if so how es the proposed change effect the area: Spiect property is not located in one of the areas identified below.
	Su	bject property is not located in one of the areas identified below.
	Le	high Acres Commercial Overlay:
	Aiı	rport Noise Zone 2 or 3:
	Ac	equisition Area:
	Jo	int Planning Agreement Area (adjoining other jurisdictional lands):
	Co	ommunity Redevelopment Area:
D.	Pr	oposed change for the subject property:
	No	change is proposed for subject property, this is a text amendment.
E.	Po	otential development of the subject property:
	Th	ne request is for a text amendment to address traffic concerns for an
	ех	isting development adjacent to Corkscrew Road. Corkscrew Road is the
	su	bject of the text amendment.
	1.	Calculation of maximum allowable development under existing FLUM: SEP 2 3 2008
		Residential Units/Density Community Developmen
		Commercial intensity
		Industrial intensity

2. Calculation of maximum allowable development under proposed FL		
	Residential Units/Density	
	Commercial intensity	
	Industrial intensity	

IV. AMENDMENT SUPPORT DOCUMENTATION

At a minimum, the application shall include the following support data and analysis. These items are based on comprehensive plan amendment submittal requirements of the State of Florida, Department of Community Affairs, and policies contained in the Lee County Comprehensive Plan. Support documentation provided by the applicant will be used by staff as a basis for evaluating this request. To assist in the preparation of amendment packets, the applicant is encouraged to provide all data and analysis electronically. (Please contact the Division of Planning for currently accepted formats)

A. General Information and Maps

NOTE: For <u>each</u> map submitted, the applicant will be required to provide a reduced map (8.5" x 11") for inclusion in public hearing packets.

The following pertains to all proposed amendments that will affect the development potential of properties (unless otherwise specified).

- -The Amendment does not affect the development potential of property. The adjacent properties are entitled and developed.
 - 1. Provide any proposed text changes.

SEE ATTACHED

2. Provide a <u>current</u> Future Land Use Map at an appropriate scale showing the boundaries of the subject property, surrounding street network, surrounding designated future land uses, and natural resources.

SEE ATTACHED

3. Provide a <u>proposed</u> Future Land Use Map at an appropriate scale showing the boundaries of the subject property, surrounding street network, surrounding designated future land uses, and natural resources.

There is no proposed future land use map.

COMMUNITY DEVELOPMENT

4. Map and describe existing land *uses* (not designations) of the subject property and surrounding properties. Description should discuss consistency of current uses with the proposed changes.

SEE ATTACHED- The existing land use is Corkscrew Road, an arterial road. There is an existing drectional access to Miromar OutletS.

5. Map and describe existing zoning of the subject property and surrounding properties.

A zoning map of the area is provided. Roads do not have zoning designations.

6. The certified legal description(s) and certified sketch of the description for the property subject to the requested change. A metes and bounds legal description must be submitted specifically describing the entire perimeter boundary of the property with accurate bearings and distances for every line. The sketch must be tied to the state plane coordinate system for the Florida West Zone (North America Datum of 1983/1990 Adjustment) with two coordinates, one coordinate being the point of beginning and the other an opposing corner. If the subject property contains wetlands or the proposed amendment includes more than one land use category a metes and bounds legal description, as described above, must be submitted in addition to the perimeter boundary of the property for each wetland or future land use category.

This is a text amendment related to Corkscrew Road access. Not applicable.

7. A copy of the deed(s) for the property subject to the requested change.

This is a text amendment related to Corkscrew Road access. Not applicable.

8. An aerial map showing the subject property and surrounding properties.

SEE ATTACHED

9. If applicant is not the owner, a letter from the owner of the property authorizing the applicant to represent the owner.

This is a text amendment related to Corkscrew Road access. Not applicable.

SEP 2 3 2008

B. Public Facilities Impacts

NOTE: The applicant must calculate public facilities impacts based on a maximum development scenario (see Part II.H.).

1. Traffic Circulation Analysis- There is no land use change.

The analysis is intended to determine the effect of the land use change on the Financially Feasible Transportation Plan/Map 3A (20-year horizon) and on the Capital Improvements Element (5-year horizon). Toward that end, an applicant must submit the following information:

Long Range – 20-year Horizon:

- Working with Planning Division staff, identify the traffic analysis zone (TAZ) or zones that the subject property is in and the socio-economic data forecasts for that zone or zones;
- b. Determine whether the requested change requires a modification to the socio-economic data forecasts for the host zone or zones. The land uses for the proposed change should be expressed in the same format as the socio-economic forecasts (number of units by type/number of employees by type/etc.);
- c. If no modification of the forecasts is required, then no further analysis for the long range horizon is necessary. If modification is required, make the change and provide to Planning Division staff, for forwarding to DOT staff. DOT staff will rerun the FSUTMS model on the current adopted Financially Feasible Plan network and determine whether network modifications are necessary, based on a review of projected roadway conditions within a 3mile radius of the site;
- d. If no modifications to the network are required, then no further analysis for the long range horizon is necessary. If modifications are necessary, DOT staff will determine the scope and cost of those modifications and the effect on the financial feasibility of the plan;
- e. An inability to accommodate the necessary modifications within the financially feasible limits of the plan will be a basis for denial of the requested land use change;
- f. If the proposal is based on a specific development plan, then the site plan should indicate how facilities from the current adopted Financially Feasible Plan and/or the Official Trafficways Map will be accommodated.

<u>Short Range – 5-year CIP horizon:</u>

- a. Besides the 20-year analysis, for those plan amendment proposals that include a specific and immediated development plan, identify the existing roadways serving the site and within a 3-mile radius (indicate laneage, functional classification, current LOS, and LOS standard);
- b. Identify the major road improvements within the 3-mile study area funded through the construction phase in adopted CIP's (County or Cities) and the State's adopted Five-Year Work Program; Projected 2030 LOS under proposed designation (calculate anticipated number of trips and distribution on roadway network, and identify resulting

changes to the projected LOS);

SEP 2 3 2002

- c. For the five-year horizon, identify the projected roadway conditions (volumes and levels of service) on the roads within the 3-mile study area with the programmed improvements in place, with and without the proposed development project. A methodology meeting with DOT staff prior to submittal is required to reach agreement on the projection methodology:
- d. Identify the additional improvements needed on the network beyond those programmed in the five-year horizon due to the development proposal.
- 2. Provide an existing and future conditions analysis for (see Policy 95.1.3):
 - a. Sanitary Sewer
 - b. Potable Water
 - c. Surface Water/Drainage Basins
 - d. Parks, Recreation, and Open Space
 - e. Public Schools.

There is no land use change.

Analysis should include (but is not limited to) the following (see the Lee County Concurrency Management Report):

There is no land use change.

- Franchise Area, Basin, or District in which the property is located;
- Current LOS, and LOS standard of facilities serving the site:
- Projected 2030 LOS under existing designation;
- Projected 2030 LOS under proposed designation:
- Existing infrastructure, if any, in the immediate area with the potential to serve the subject property.
- Improvements/expansions currently programmed in 5 year CIP, 6-10 year CIP, and long range improvements; and
- Anticipated revisions to the Community Facilities and Services Element and/or Capital Improvements Element (state if these revisions are included in this amendment).
- Provide a letter of service availability from the appropriate utility for sanitary sewer and potable water.

In addition to the above analysis for Potable Water:

- Determine the availability of water supply within the franchise area using the current water use allocation (Consumptive Use Permit) based on the annual average daily withdrawal rate.
- Include the current demand and the projected demand under the existing designation, and the projected demand under the proposed designation.
- Include the availability of treatment facilities and transmission lines for reclaimed water for irrigation. SEP 2 3 2002

- Include any other water conservation measures that will be applied to the site (see Goal 54).
- 3. Provide a letter from the appropriate agency determining the adequacy/provision of existing/proposed support facilities, including:
 - a. Fire protection with adequate response times;
 - b. Emergency medical service (EMS) provisions;
 - c. Law enforcement;
 - d. Solid Waste:
 - e. Mass Transit; and
 - f. Schools.

NOT APPLICABLE- NO CHANGE

In reference to above, the applicant should supply the responding agency with the information from Section's II and III for their evaluation. This application should include the applicant's correspondence to the responding agency.

- C. Environmental Impacts- There is no land use change.
 - Provide an overall analysis of the character of the subject property and surrounding properties, and assess the site's suitability for the proposed use upon the following:
 - 1. A map of the Plant Communities as defined by the Florida Land Use Cover and Classification system (FLUCCS).
 - 2. A map and description of the soils found on the property (identify the source of the information).
 - 3. A topographic map depicting the property boundaries and 100-year flood prone areas indicated (as identified by FEMA).
 - 4. A map delineating the property boundaries on the Flood Insurance Rate Map effective August 2008.
 - 5. A map delineating wetlands, aquifer recharge areas, and rare & unique uplands.
 - 6. A table of plant communities by FLUCCS with the potential to contain species (plant and animal) listed by federal, state or local agencies as endangered, threatened or species of special concern. The table must include the listed species by FLUCCS and the species status (same as FLUCCS map).
- D. <u>Impacts on Historic Resources</u>- There is no land use change. List all historic resources (including structure, districts, and/or archeologically

sensitive areas) and provide an analysis of the proposed change's impact on these resources. The following should be included with the analysis:

SEP 2 3 2008

Page 9 of 12
COMMUNITY DEVELOPMENT

- 1. A map of any historic districts and/or sites, listed on the Florida Master Site File, which are located on the subject property or adjacent properties.
- 2. A map showing the subject property location on the archeological sensitivity map for Lee County.

E. Internal Consistency with the Lee Plan- There is no land use change.

- 1. Discuss how the proposal affects established Lee County population projections, Table 1(b) (Planning Community Year 2030 Allocations), and the total population capacity of the Lee Plan Future Land Use Map.
- 2. List all goals and objectives of the Lee Plan that are affected by the proposed amendment. This analysis should include an evaluation of all relevant policies under each goal and objective.
- 3. Describe how the proposal affects adjacent local governments and their comprehensive plans.
- 4. List State Policy Plan and Regional Policy Plan goals and policies which are relevant to this plan amendment.

F. Additional Requirements for Specific Future Land Use Amendments

1. Requests involving Industrial and/or categories targeted by the Lee Plan as employment centers (to or from)-

Not applicable, there is no land use change.

- a. State whether the site is accessible to arterial roadways, rail lines, and cargo airport terminals,
- b. Provide data and analysis required by Policy 2.4.4,
- c. The affect of the proposed change on county's industrial employment goal specifically policy 7.1.4.
- 3. Requests moving lands from a Non-Urban Area to a Future Urban Area

There is no land use change.

a. Demonstrate why the proposed change does not constitute Urban Sprawl. Indicators of sprawl may include, but are not limited to: low-intensity, low-density, or single-use development; 'leap-frog' type development; radial, strip, isolated or ribbon pattern type development; a failure to protect or conserve natural resources or agricultural land; limited accessibility; the loss of large amounts of functional open space; and the installation of costly and duplicative infrastructure when opportunities for infill and redevelopment exist.

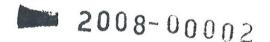
- 7

2008-00002

SEP 2 3 2008

4. Requests involving lands in critical areas for future water supply must be evaluated based on policy 2.4.2.

There is no land use change.

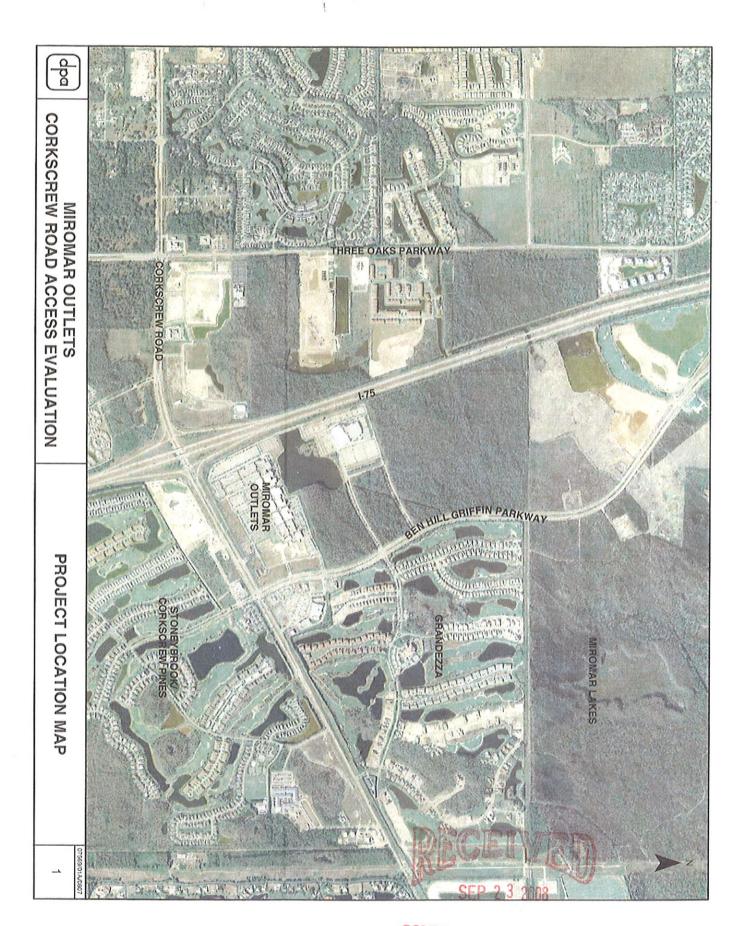

5. Requests moving lands from Density Reduction/Groundwater Resource must fully address Policy 2.4.3 of the Lee Plan Future Land Use Element.

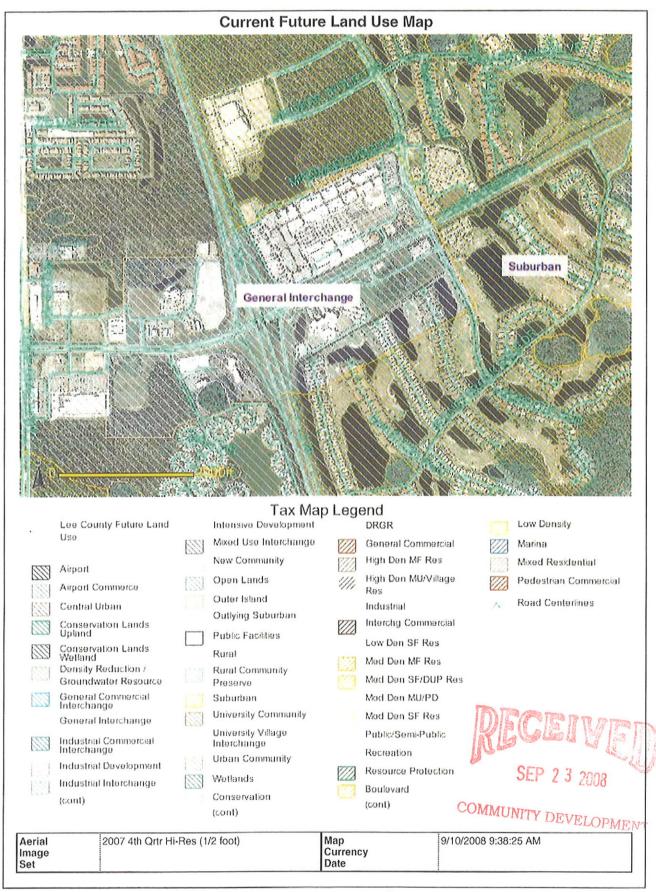
There is no land use change.

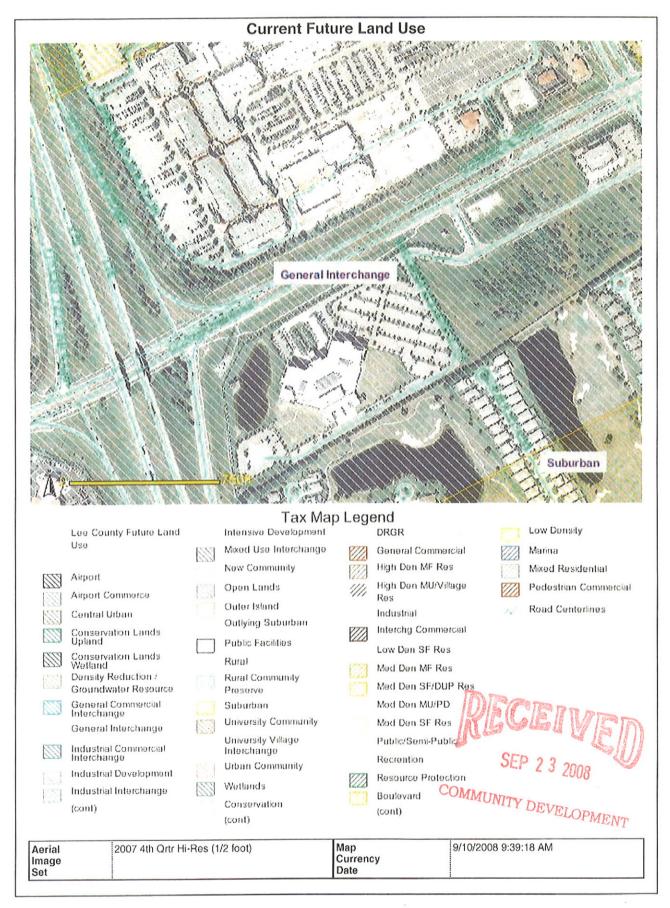
G. Justify the proposed amendment based upon sound planning principles. Be sure to support all conclusions made in this justification with adequate data and analysis.

There is no land use change.

(THIS SPACE INTENTIONALLY LEFT BLANK)




Item 1: Fee Schedule


Map Amendment Flat Fee	\$2,000.00 each
Map Amendment > 20 Acres	\$2,000.00 and \$20.00 per 10 acres
Small Scale Amendment (10 acres or less)	\$1,500.00 each
Text Amendment Flat Fee	\$2,500.00 each

AFFIDAVIT
I, certify that I am the owner or authorized representative of the property described herein, and that all answers to the questions in this application and any sketches, data, or other supplementary matter attached to and made a part of this application, are honest and true
to the best of my knowledge and belief. I also authorize the staff of Lee County Community Development
to enter upon the property during normal working hours for the purpose of investigating and evaluating
the request made through this application. (There's no Property that hereoto be considered on this text area ment)
9/22/08
Signature of owner or owner-authorized agent Date
Typed or printed name
Typed or printed name
STATE OF FLORIDA) COUNTY OF LEE)
The foregoing instrument was certified and subscribed before me thisday ofday of
by NEALE MONTGOMERY , who is personally known to me or who has produced
as identification.
(SEAL) Notary Public State of Florida Jeanne M Franklin My Commission DD686088 Expires 07/09/2011 Signature of notary public JEANNE M. FRANKLIN Printed name of notary public

2008-00002



MAP AND DESCRIPTION OF EXISTING LAND USES (NOT DESIGNATIONS) OF SUBJECT PROPERTY AND SURROUNDING PROPERTIES

EXISTING LAND USES OF SUBJECT PROPERTY AND SURROUNDING PROPERTIES

- Subject Property- section of Corkscrew Road Right-of-Way between I-75 and Stoneybrook Golf **Boulevard**
- North of Subject section of Right-of Way- Commercial Planned Development- Miromar Outlet Mall-retail uses
 - The proposed change to the comprehensive plan permits alternative access to Miromar Outlet Mall, if approved by Lee County DOT, alleviating and reducing current traffic problems as outlined in the report by David Plummer and Associates, dated September 12 2008
- Northeast of Subject Right-of-Way- Mixed Use Planned Development- retail shopping center-Perkins restaurant, McDonald's Restaurant, vacant properties, Rick Johnson Auto & Tire, Gas Station, Shoppes at Grand Oaks

2008-00002

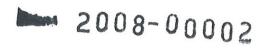
Subject Right of Way

COMMUNITY DEVELOPMENT

- Southeast of Subject section of Right-of-Way- Residential Planned Development- Stoneybrook
- South of Subject section of Right-of-Way- general commercial zoning vacant land and CVS pharmacy retail store
- Southwest of Subject section of Right-of-Way- Commercial Planned Development- International Design Center

2008-00002

COMMUNITY DEVELOPMENT


Proposed Text Change- Policy 1.3.7

(additions are denoted by <u>underlined text</u> and deletions are denoted by strike-through text)

POLICY 1.3.7: The following access control standards will apply to the interstate interchange areas of Luckett Road, Alico Road, Corkscrew Road, and Bonita Beach Road. The specified turning movements are not to be construed as conveying a property right or creating any expectation that they will be a permanent feature. The County reserves the right to modify or further restrict movements as it deems necessary to address operational and safety issues. Access control issues for Daniels Parkway west of I-75 are governed by the controlled access resolution adopted by the Board of County Commissioners on October 4, 1989, as may be amended from time to time. The other interchange areas are state roads where access is controlled by the Florida Department of Transportation under the provisions of Rule 14-97.003, FAC. The standard is a strict requirement during the rezoning and development order processes for cases after the effective date of this policy.

Access Control Standards for Luckett Road and Bonita Beach Road

- 1. The distance to the first connection will be at least 880 feet, provided such location is outside the federal limited access right-of-way line. A connection is generally defined as a driveway or roadway, limited to right-in/right-out movements, but can include a directional median opening. This distance will be measured from the end of the upstream interchange ramp or the beginning of the downstream interchange ramp, whichever is farther from the centerline of the interstate. A single connection per property not meeting this connection spacing standard may be provided, pursuant to the connection permit process, if no reasonable access to the property exists, and if permitting authority review of the connection permit application provided by the applicant determines that the connection does not create a safety, operational or weaving hazard.
- 2. The minimum distance to the first full movement median opening will be at least 1760 feet as measured from the end of the upstream interchange ramp or the beginning of the downstream interchange ramp, whichever is farther from the centerline of the interstate.
- 3. Connections and median openings consistent with the above spacing standards may still be denied in the location requested when the Lee County Traffic Engineer determines, based on the engineering and traffic information provided in the permit application, that the safety or operation of the interchange or the limited access highway would be adversely affected.
- 4. Connections and median openings existing prior to 1998 that do not meet the standards are allowed to remain (unless they need to be closed for operational safety reasons), but cannot expand movements, except in the case of County roadway extensions.

Access Control Standards for Alico Road

The access on Alico Road is limited to the following movements and locations, from west to east and excluding the area within the interstate limited access right-of-way:

STATION	DISTANCE ⁽¹⁾	MEDIAN OPENING?	MOVEMENT	CONNECTION
160+59.33 170+54.54 177+74.54 222+81	n/a 995.21 ft. 720 ft. n/a	Yes Yes ⁽²⁾ Yes Yes	All All EB to NB Left-in ⁽³⁾	Oriole Road Alico Int. Park DRI Three Oaks Parkway Coca-Cola Bottling Co. (N)
234+44	1163 ft.	Yes	Rt-in/Rt-out from N&S All	University Plaza(S) Ben Hill Griffin Pkwy.

Footnotes

(1) Distance measured from next connection to the west.

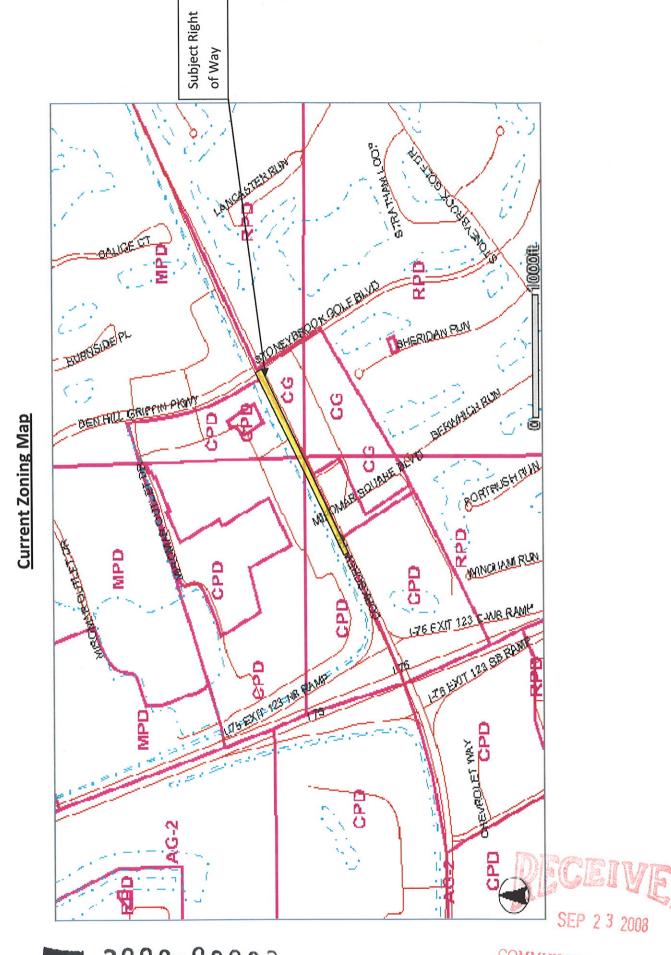
(2) Unsingalized only. Subject to future restrictions if traffic signal warranted.

(3) A WB to SB left-in may be allowed if sufficient right-of-way is provided and an analysis demonstrating acceptable operation is submitted to and approved by LCDOT.

Access Control Standards for Corkscrew Road

The access on Corkscrew Road is limited to the following movements and locations, from west to east and excluding the area within the interstate limited access right-of-way:

STATION	DISTANCE ⁽¹⁾	MEDIAN OPENING?	MOVEMENT	CONNECTION
172+84	n/a	Yes	All	Three Oaks Parkway
179+44	660 ft.	Yes	EB to NB Left-in (2)	Corkscrew Crossing (#1)
			Rt-in/Rt-out from N&S	
185+29	585 ft.	Yes	All	Corkscrew Crossing (#2)
187+83	254 ft.	No	Rt-in/Rt-out from N (3)	Pic-N-Run Entrance
190+34	253 ft.	Yes	EB to NB Left-in	Estero Int. Com. Park (#3)
			Rt-in/Rt-out from N	
194+29	395 ft.	Yes	WB to SB Left-in	Corkscrew Woodlands
			NB to SB Left-out	
			Rt-in/Rt-out from S	
221+47	n/a	Yes	U-turns only	None
230+14	867 ft.	Yes	EB to NB Left-in	Miromar Outlet Mall
			Rt-in/Rt-out from N&S ⁽⁴⁾⁽⁵⁾	
236+73	660 ft.	Yes	All	Ben Hill Griffin Pkwy.


Footnotes:

- (1) Distance measured from next connection to the west.
- (2) A WB to SB left-in may be allowed at this location if necessary.
- (3) The previously-approved driveway for the Pic-N-Run may remain provided there is not other access; however, if Pic-n-run establishes a connection to the frontage road system and other access locations, the driveway must be removed.
- (4) The Right-in/Right-out from the south already exists at Station 230+65. This connection may be shifted west to any point between Stations 226+30 and 230+65 if proven not to be a traffic safety hazard.
- (5) Alternative access improvements for the Miromar Outlet Mall may be allowed, if an analysis demonstrating acceptable operations is submitted to and approved by LCDOT.

(Relocated and Ameded by Ordinance No. 00-22, Amended by Ordinance No. 03-05)

SEP 2 3 2008

Subject Property- section of Corkscrew Road Right-of-Way between I-75 and Stoneybrook Golf Boulevard

North of Subject section of Right-of Way- Commercial Planned Development- Miromar Outlet Mall

Northeast of Subject Right-of-Way- Mixed Use Planned Development- retail shopping center and residential community

Southeast of Subject section of Right-of-Way- Residential Planned Development- Stoneybrook community

South of Subject section of Right-of-Way- general commercial zoning - vacant land and CVS pharmacy retail store

Southwest of Subject section of Right-of-Way- Commercial Planned Development- International Design Center

2008-00002

COMMUNITY DEVELOPMENT

COMMUNITY DEVELOPMENT

CORKSCREW ROAD ACCESS COMPREHENSIVE PLAN AMENDMENT

Project #07569

September 12, 2008

Prepared by:

DAVID PLUMMER & ASSOCIATES, INC.

1531 Hendry Street

Fort Myers, Florida 33901

CORKSCREW ROAD ACCESS COMPREHENSIVE PLAN AMENDMENT

Introduction

Corkscrew Road is one of the primary east-west arterials in south Lee County. It is the principal arterial providing access to major developments in the Corkscrew Road area east of I-75, including Stoneybrook, International Design Center, Grandezza, Bella Terra and Miromar Outlet Mall. In addition, it provides connectivity between some of the major north-south arterials in South Lee County, including US 41, Three Oaks Parkway, I-75 and Ben Hill Griffin Parkway.

The section of Corkscrew Road from Three Oaks Parkway to Ben Hill Griffin Parkway is in the Interstate interchange area and access points along this section of Corkscrew Road are controlled by <u>The Lee Plan</u>, Future Land Use Element Policy 1.3.7. Excerpts from <u>The Lee Plan</u> are provided in Appendix 1 and the specific access points designated by <u>The Lee Plan</u> are summarized in Exhibit 1. As shown in Exhibit 1, Station 230+14 represents the eastbound to northbound directional median opening serving the Miromar Outlet Mall.

Traffic operational problems have been experienced on Corkscrew Road between I-75 and Ben Hill Griffin Parkway. Miromar has been proactively working with the Lee County DOT to address and alleviate these operational issues. As an interim improvement, Miromar lengthened the eastbound left-turn lane at the Miromar Outlets directional median opening on Corkscrew Road by approximately 250 feet.

As part of a long term solution, Miromar has evaluated several improvement alternatives, including the potential future relocation of the Miromar Outlets directional median opening to the west.

The potential relocation of the Miromar Outlets directional median opening and other access improvements would require an amendment to the established access points of <u>The Lee Plan</u>. Therefore, this traffic study has been prepared in support of the proposed amendment to the Comprehensive Plan (The Lee Plan) modifying Future Land Use Element Policy 1.3.7 to allow the possible future relocation of the existing Miromar Outlet Mall directional median opening and other potential access improvements.

Proposed Amendment

The proposed amendment to The Lee Plan; Future Land Use Element Policy 1.3.7 is to add a footnote to the designation of Station 230+14 (Miromar Outlet Mall directional median opening) to allow for alternative access improvements in the future, if an analysis demonstrating acceptable operations is submitted to and approved by Lee County DOT. The proposed amendment is presented below and in Exhibit 2.

Proposed Text Amendment to The Lee Plan, Future Land Use Element, Policy 1.3.7 Revised Access Control Standards For Corkscrew Road

Station	Distance (1)	Median Opening?	Movement	Connection
172+84 179+44	n/a 660 ft.	Yes Yes	All EB to NB Left-in (2)	Three Oaks Parkway Corkscrew Crossing (#1)
			Rt-in/Rt-out from N&S	Corkscrew Crossing (#2)
185+29	585 ft.	Yes No	All Rt-in/Rt-out from N ⁽³⁾	Pic-N-Run Entrance
187+83	254 ft. 253 ft.	Yes	EB to NB Left-in	Estero Int. Com. Park (#3)
190+34 194+29	395 ft.	Yes	Rt-in/Rt-out from N WB to SB Left-in NB to SB Left-out	Corkscrew Woodlands
			Rt-in/Rt-out from S	N
221 + 47	n/a	Yes	U-turns only	None
230+14	867 ft.	Yes	EB to NB Left-in Rt-in/Rt-out from N&S ⁽⁴⁾ (5)	Miromar Outlet Mall
236+73	660 ft.	Yes	All	Ben Hill Griffin Pkwy.

Footnotes:

(1) Distance measured from next connection to the west.

(2) A WB to SB left-in may be allowed at this location if necessary.

(3) The previously-approved driveway for the Pic-N-Run may remain provided there is not other access; however, if Pic-n-run establishes a connection to the frontage road system and other access locations, the driveway must be removed.

(4) The Right-in/Right-out from the south already exists at Station 230+65. This connection may be shifted west to any point between Stations 226+30 and 230+65 if proven not to be a traffic safety hazard. (Relocated and Amended by Ordinance No. 00-22, Amended by Ordinance No. 03-05).

Alternative access improvements for the Miromar Outlet Mall may be allowed, if an analysis demonstrating acceptable operations is submitted to and approved by LCDOT.

Traffic Circulation Analysis

The Lee County Application for a Comprehensive Plan Amendment, Section IV, Part B.1 requests certain traffic circulation support analysis and documentation information as part of the public facilities impact assessment. The analysis is intended to determine the effect of the land use change on the Financially Feasible Transportation Plan/Map 3A (20-year horizon) and on the Capital Improvement Element (5-year horizon).

The proposed amendment is a "text" amendment only, to allow for potential alternative access improvements in the future, including a possible future relocation of the existing Miromar Outlet Mall access point (Station 230+14) on Corkscrew Road by adding a footnote to the Future Land Use Element Policy 1.3.7. The proposed amendment will not result in any land use, socioeconomic data and/or traffic analysis zone (TAZ) modifications. Therefore, no further analyses for the long range (20-year) horizon and/or for the short range (5-year) horizon are necessary per the Section IV, Part B.1 of the Comprehensive Plan Amendment application.

alternative access improvements were evaluated and are presented in the following sections of this report.

Improvement Evaluation

Several alternative improvements to improve traffic operations along Corkscrew Road, including a "do nothing" alternative, were evaluated. They are presented in the following reports and included in the appendices to this report. These reports have been submitted to and reviewed by the Lee County DOT.

- Corkscrew Road Traffic Operations Assessment, dated March 6, 2006, Appendix 2.
- Miromar Outlets Corkscrew Road Access Evaluation, dated September 7, 2007, Appendix 3.
- Miromar Outlets Signal Warrant Study, and dated January 31, 2008, Appendix 4.

Since the objective is to improve traffic operations along the Corkscrew Road corridor and provide more efficient access to and from the Miromar Outlet Mall, the "do nothing" alternative is not considered an acceptable alternative.

Two important alternatives included: 1) providing dual eastbound left-turn lanes and signalization at the existing Miromar Outlet Mall directional median opening; and 2) relocating the Miromar Outlet Mall directional median opening to approximately 350 feet west, along with providing dual eastbound left-turn lanes and signalization. Other alternative access improvements are possible and are under consideration. This analysis, however, presents the operational characteristics of the relocation of the directional median opening.

While providing dual left-turn lanes and signalization of the eastbound to northbound left-turn movement at the existing Outlet Mall location will not require a Plan Amendment, the potential relocation of the Miromar Outlet Mall directional median opening to the west will require an amendment to The Lee Plan Policy 1.3.7. Therefore, this traffic study summarizes the potential impacts of the possible relocation as compared to the existing conditions (without improvement).

The proposed improvements associated with the possible future relocation of the Miromar Outlet Mall directional median opening include the following.

- Relocate Miromar Outlets directional median opening approximately 350 feet to the west.
- Provide dual eastbound left-turn lanes (inbound) and dual southbound right-turn lanes (outbound) at the relocated entrance.
- Signalize the eastbound left-turn movement to operate within the "shadow" of the adjacent signals.
- Convert the existing Miromar Outlets entrance to inbound right-turn movement only.

- Extend the eastbound dual left-turn lanes at the Corkscrew Road/Ben Hill Griffin Parkway intersection.
- Provide southbound dual right-turn lanes and separate westbound right-turn lane at the Corkscrew Road/Ben Hill Griffin Parkway intersection.

A detailed arterial analysis of the impacts of the proposed improvements was performed using Synchro/SimTraffic. The analysis is summarized in the report titled Miromar Outlets Corkscrew Road Access Evaluation and dated September 7, 2007. A copy of that traffic study is provided in Appendix 3.

A comparison of the various Measures of Effectiveness (MOE) associated with the proposed improvements, based on an arterial level and a network level analysis, is summarized below.

Comparison of Measures of Effectiveness (1)

Measure of Effectiveness	Without Improvement	With Improvement	Change
Corkscrew Road Arterial Analysis			
Total Delay/Vehicle (Sec/Veh) Total Delay (Hours) Stops/Vehicle Stops Performance Index Eastbound Average Speed (MPH) Eastbound Arterial LOS Westbound Average Speed (MPH) Westbound Arterial LOS	13 90 0.32 7910 112 29.2 C 28.8 C	13 91 0.28 6930 110.6 28.7 C 27.4	No Change +1.01% -12.50% -12.40% -1.25% -1.71% No Change -4.86% No Change
Network Analysis			
Total Delay/Vehicle (Sec/Veh) Total Delay (Hours) Stops/Vehicle Stops Average Speed (MPH) Travel Time (Hours) Performance Index	17 167 0.36 12,992 24 328 203.1	16 162 0.33 11,911 24 322 195.5	-5.88% -3.00% -8.33% -8.32% No Change -1.83% -3.74%

As shown above, the findings are summarized as follows.

⁽¹⁾ Based on the Miromar Outlets Corkscrew Road Access Evaluation dated September 7, 2007, Appendix 3.

- 1. Total delay per vehicle on Corkscrew Road was unchanged without and with the improvements. On a network level analysis, the improvements reduced total delay per vehicle by approximately 6% (from 17 seconds to 16 seconds).
- 2. While the total delay in hours on Corkscrew Road increased slightly by 1% (from 90 hours to 91 hours), the total delay in hours on the network was reduced by 3% (from 167 hours to 162 hours).
- 3. Stops per vehicle and total number of stops deceased approximately 12% on Corkscrew Road and by approximately 8% on the network.
- 4. The proposed improvements resulted in a better Performance Index (PI), indicating the combined effect of delay, stops and queuing, on Corkscrew Road, as well as on the network.
- 5. Based on arterial speeds, Corkscrew Road continues to operate at LOS "C" with the proposed improvements.
- 6. The proposed improvements maintain the overall network average speed and reduces the network travel time by approximately 2%, with a slight reduction in arterial speed.

In addition to the arterial analysis, SimTraffic simulations demonstrated significant operational improvements at the Miromar Outlet Mall directional median opening and the Ben Hill Griffin Parkway intersections as a result of the proposed improvements. A comparison of the intersection operations without and with the proposed improvements is summarized below.

Intersection Measures of Effectiveness (1)

Measure of Effectiveness	Without Improvement	With Improvement	Change		
Corkscrew Road/Miromar Directional Me	edian Opening:				
Total Delay/Vehicle (Sec/Veh) Total Delay (Hours) Total Stops Average Speed (MPH) Eastbound Left 95% Queue (Feet) Eastbound Left Queuing Penalty (Veh)	38.6 37.9 1,224 15 849 23	14.4 14.0 916 24 176 ⁽²⁾ 0	-62.70% -63.06% -25.16% +60.0% -58.54% -23		
Corkscrew Road/Ben Hill Griffin Parkway:					
Total Delay/Vehicle (Sec/Veh) Total Delay (Hours) Total Stops	51.9 48.2 2535	46.3 42.0 2349	-10.79% -12.86% -7.70%		

Average Speed (MPH)	6	8	+33.33%
Eastbound Left 95% Queue (Feet)	593 ⁽²⁾	490 ⁽²⁾	-17.30%
Eastbound Left Queuing Penalty (Veh)	15	0	-15

Footnotes:

As shown above, the proposed improvements demonstrated the following.

- 1. The total delay per vehicle and total delay hours were reduced approximately 63% at the Miromar Directional Median Opening and approximately 11% to 13% at the Ben Hill Griffin Parkway intersection.
- 2. The total number of stops was decreased approximately 25% and 8% at the Miromar Directional Median Opening and the Ben Hill Griffin Parkway intersection, respectively.
- 3. Average speed increased at both intersections.
- 4. The eastbound left-turn queues at the Miromar Directional Median Opening were reduced by approximately 59%, with no queuing penalty and the eastbound left-turn queues at the Ben Hill Griffin Parkway intersection were reduced by approximately 17%, with no queuing penalty.

Conclusions

There are several alternative access improvements to Miromar Outlet Mall under consideration including relocating the directional median opening and providing additional right-in and out access. The proposed relocation of the directional median opening to the west resulted in the following.

- Reduced total delay and delay per vehicle at both the Miromar Directional Median Opening and the Ben Hill Griffin Parkway intersections.
- Reduced total number of stops and stops per vehicle on Corkscrew Road.
- Reduced eastbound left-turn queues at the Miromar Directional Median Opening and the Ben Hill Griffin Parkway intersections.
- Improved performance index on Corkscrew Road.
- Improved traffic flow on Corkscrew Road.
- Increased eastbound left-turn storage at Ben Hill Griffin Parkway by approximately 500 feet.
- Reduced potential for dangerous right angle accidents at the Miromar Outlet Median Opening.
- Increased southbound right-turn storage by approximately 450 feet at Ben Hill Griffin Parkway.

⁽¹⁾ Based on the Miromar Outlets Corkscrew Road Access Evaluation dated September 7, 2007, Appendix 3.

The potential future relocation of the Miromar Outlets directional median opening to the west, along with reconstruction of the internal Mall roadway, improves traffic operations, increases inbound and outbound storage, and facilitates ingress and egress.

The proposed Comprehensive Plan Amendment is a text change to Future Land Use Element, Policy 1.3.7 to allow alternative access improvements, including the possible future relocation of the directional median opening, if both Lee County DOT and Miromar find that it is the best alternative to improve traffic operations along Corkscrew Road.

EXHIBIT 1 CORKSCREW ROAD ACCESS COMPREHENSIVE PLAN AMENDMENT

POLICY 1.3.7, EXISTING ACCESS CONTROL STANDARDS FOR CORKSCREW ROAD

STATION	DISTANCE (1)	MEDIAN OPENING?	MOVEMENT	CONNECTION
172+84	n/a	Yes	All	Three Oaks Parkway
179+44	660 ft.	Yes	EB to NB Left-in (2) Rt-in/Rt-out from N&S	Corkscrew Crossing (#1)
185+29	585 ft.	Yes	All	Corkscrew Crossing (#2)
187+83	254 ft.	No	Rt-in/Rt-out from N (3)	Pic-N-Run Entrance
190+34	253 ft.	Yes	EB to NB Left-in Rt-in/Rt-out from N	Estero Int. Com. Park (#3)
194+29	395 ft.	Yes	WB to SB Left-in NB to SB Left-out Rt-in/Rt-out from S	Corkscrew Woodlands
221+47	n/a	Yes	U-turns only	None
230+14	867 ft.	Yes	EB to NB Left-in Rt-in/Rt-out from N&S (4)	Miromar Outlet Mall
236+73	660 ft.	Yes	All	Ben Hill Griffin Pkwy.

- (1) Distance measured from next connection to the west.
- (2) A WB to SB left-in may be allowed at this location if necessary.
- (3) The previously-approved driveway for the Pic-N-Run may remain provided there is not other access; however, if Pic-N-Run establishes a connection to the frontage road system and other access locations, the driveway must be removed.
- (4) The Right-in/Right-out from the south already exists at Station 230+65. This connection may be shifted west to any point between Stations 226+30 and 230+65 if proven not to be a traffic safety hazard.

(Relocated and Amended by Ordinance No. 00-22, Amended by Ordinance No. 03-05)

Source: The Lee Plan, 2007 Codification, As Amended through August 2007, Future Land Use Element Policy 1.3.7

EXHIBIT 2 CORKSCREW ROAD ACCESS COMPREHENSIVE PLAN AMENDMENT

REVISED ACCESS CONTROL STANDARDS FOR CORKSCREW ROAD

STATION	DISTANCE (1)	OPENING?	? MOVEMENT	CONNECTION
172+84	n/a	Yes	All	Three Oaks Parkway
179+44	660 ft.	Yes	EB to NB Left-in ⁽²⁾ Rt-in/Rt-out from N&S	Corkscrew Crossing (#1)
185+29	585 ft.	Yes	All	Corkscrew Crossing (#2)
187+83	254 ft.	No	Rt-in/Rt-out from N (3)	Pic-N-Run Entrance
190+34	253 ft.	Yes	EB to NB Left-in Rt-in/Rt-out from N	Estero Int. Com. Park (#3)
194+29	395 ft.	Yes	WB to SB Left-in NB to SB Left-out Rt-in/Rt-out from S	Corkscrew Woodlands
221+47	n/a	Yes	U-turns only	None
230+14	867 ft.	Yes	EB to NB Left-in Rt-in/Rt-out from N&S (4)(5)	Miromar Outlet Mall
236+73	660 ft.	Yes	All	Ben Hill Griffin Pkwy.

- (1) Distance measured from next connection to the west.
- (2) A WB to SB left-in may be allowed at this location if necessary.
- (3) The previously-approved driveway for the Pic-N-Run may remain provided there is not other access; however, if Pic-N-Run establishes a connection to the frontage road system and other access locations, the driveway must be removed.
- (4) The Right-in/Right-out from the south already exists at Station 230+65. This connection may be shifted west to any point between Stations 226+30 and 230+65 if proven not to be a traffic safety hazard.
 - (Relocated and Amended by Ordinance No. 00-22, Amended by Ordinance No. 03-05)
- (5) Alternative access improvements for the Miromar Outlet Mall may be allowed, if an analysis demonstrating acceptable operations is submitted to and aproved by LCDOT.

APPENDIX 1 CORKSCREW ROAD ACCESS – EXCERPTS FROM THE LEE PLAN

- POLICY 1.3.2: The General Interchange areas are intended primarily for land uses that serve the traveling public: service stations, hotel, motel, restaurants, and gift shops. But because of their location, market attractions, and desire for flexibility, these interchange uses permit a broad range of land uses that include tourist commercial, general commercial and light industrial/commercial. (Amended by Ordinance No. 94-30, 99-18)
- **POLICY 1.3.3:** The <u>General Commercial Interchange</u> areas are intended primarily for general community commercial land uses: retail, planned commercial districts, shopping, office, financial, and business.
- **POLICY 1.3.4:** The <u>Industrial Commercial Interchange</u> areas are designated to permit a mixture of light industrial and/or commercial uses. This category does not permit heavy industrial uses. Within areas expanded beyond the existing Industrial Commercial Interchange boundaries (on January 1, 2007), retail commercial uses will be limited to 20% of the total floor area and light industrial uses will be a minimum of 50% of the total floor area. (Amended by Ordinance No. 07-10)
- POLICY 1.3.5: The University Village Interchange land use category is designed to accommodate both interchange land uses and non-residential land uses related to the University. Development within this interchange area may or may not be related to, or justified by the land use needs of the University. Land uses allowed within this area include those allowed in the Industrial Commercial Interchange category and the associated support development allowed in the University Village. The overall average intensity of non-residential development will be limited to 10,000 square feet of building area per non-residential acre allowed pursuant to Map 16 and Table 1(b). See the definition of Associated Support Development in the Glossary. Cooperative master planning and approval by the Board of Regents will be required prior to development within this land use category. Additionally, any development within this land use category which meets or exceeds the Development of Regional Impact thresholds, either alone or through aggregation, must conform to the requirements of Chapter 380 F.S. (Added by Ordinance No. 92-47, Amended by Ordinance No. 94-30, 00-22)
- **POLICY 1.3.6:** Lee County recognizes that development immediately adjoining the I-75 ramps could render future interchange improvements extremely costly if not prohibitive. To assist the county in evaluating the impacts of specific rezoning proposals located within 1000 feet of I-75 ramps, county staff will estimate the possible right-of-way needs for interchange improvements in that quadrant and present this information during the rezoning process. Where possible, development approvals must be phased to protect land critical for future interchange improvements. (Relocated by Ordinance No. 99-18, Amended by Ordinance No. 00-22)
- POLICY 1.3.7: The following access control standards will apply to the interstate interchange areas of Luckett Road, Alico Road, Corkscrew Road, and Bonita Beach Road. The specified turning movements are not to be construed as conveying a property right or creating any expectation that they will be a permanent feature. The County reserves the right to modify or further restrict movements as it deems necessary to address operational and safety issues. Access control issues for Daniels Parkway west of I-75 are governed by the controlled access resolution adopted by the Board of County Commissioners on October 4, 1989, as may be amended from time to time. The other interchange areas are state roads where access is controlled by the Florida Department of Transportation under the provisions of Rule 14-97.003, FAC. The standard is a strict requirement during the rezoning and development order processes for cases after the effective date of this policy.

Access Control Standards for Corkscrew Road

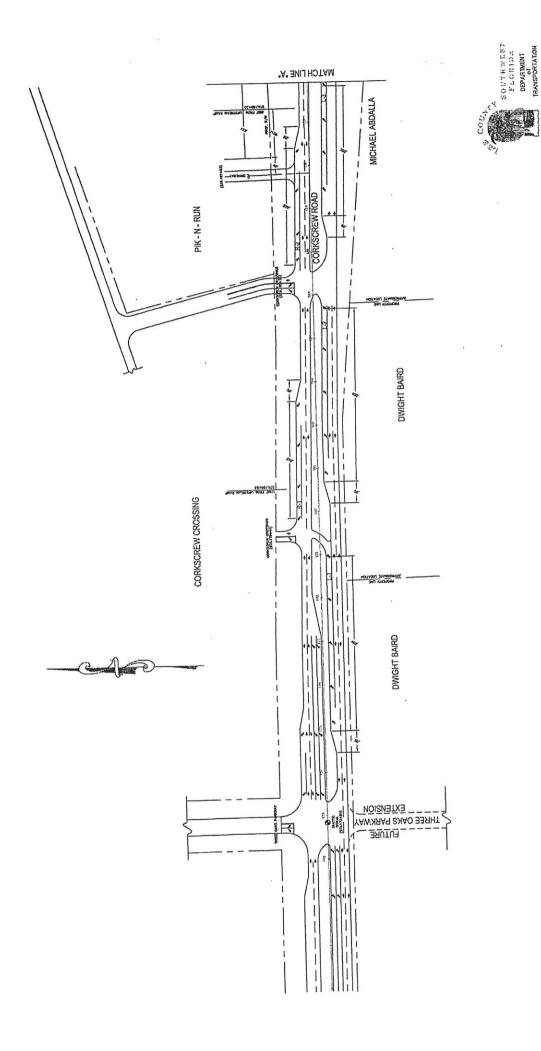
The access on Corkscrew Road is limited to the following movements and locations, from west to east and excluding the area within the interstate limited access right-of-way:

STATION 172+84 179+44	DISTANCE ⁽¹⁾ n/a 660 ft.	MEDIAN OPENING? Yes Yes	MOVEMENT All EB to NB Left-in ⁽²⁾ Rt-in/Rt-out from N&S	CONNECTION Three Oaks Parkway Corkscrew Crossings (#1)
185+29	585 ft.	Yes	All	Corkscrew Crossings (#2)
187+83	254 ft.	No	Rt-in/Rt-out from N ⁽³⁾	Pic-N-Run Entrance
190+34	253 ft.	Yes	EB to NB Left-in	Estero Int. Com. Park (#3)
194+29	395 ft.	Yes	Rt-in/Rt-out from N WB to SB Left-in NB to WB Left-out Rt-in/Rt-out from S	Corkscrew Woodlands
221+47	n/a	Yes	U-turns only	None
230+14	867 ft.	Yes	EB to NB Left-in	Miromar Outlet Mall
236+73	660 ft.	Yes	Rt-in/Rt-out from N&S ⁽⁴⁾ All	Ben Hill Griffin Pkwy.

⁽¹⁾ Distance measured from next connection to the west.

(Relocated and Amended by Ordinance No. 00-22, Amended by Ordinance No. 03-05)

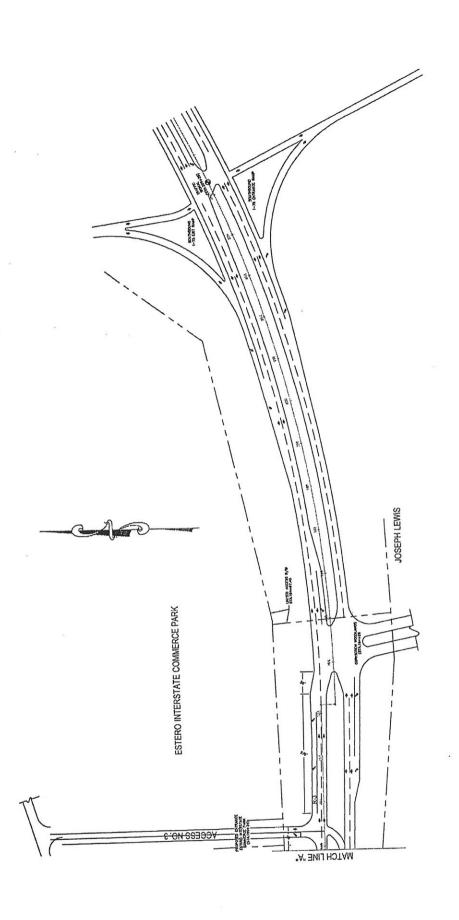
OBJECTIVE 1.4: NON-URBAN AREAS. Designate on the Future Land Use Map categories for those areas not anticipated for urban development at this time.


POLICY 1.4.1: The <u>Rural</u> areas are to remain predominantly rural--that is, low density residential, agricultural uses, and minimal non-residential land uses that are needed to serve the rural community. These areas are not to be programmed to receive urban-type capital improvements, and they can anticipate a continued level of public services below that of the urban areas. Maximum density in the Rural area is one dwelling unit per acre (1 du/acre). (Added by Ordinance No. 97-17, Amended by Ordinance No. 98-09, 00-22, 07-12)

POLICY 1.4.2: The <u>Outer Islands</u> are sparsely settled, have minimal existing or planned infrastructure, and are very distant from major shopping and employment centers. They are not expected to be programmed to receive urban-type capital improvements in the time frame of this plan, and as such can anticipate a continued level of public services below that of other land use categories. The continuation of the Outer Islands essentially in their present character is intended to provide for a rural character and lifestyle, and conserve open space and important natural upland resources. Maximum density is one dwelling unit per acre (1 du/acre). (Amended by Ordinance No. 98-09)

⁽²⁾ A WB to SB left-in may be allowed at this location if necessary.

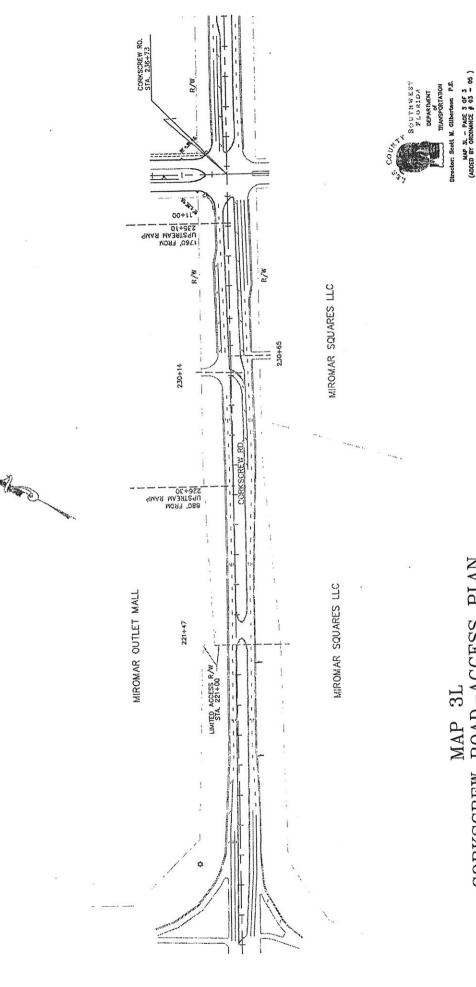
⁽³⁾ The previously-approved driveway for the Pic-N-Run may remain provided there is not other access; however, if Pic-N-Run establishes a connection to the frontage road system and other access locations, the driveway must be removed.


⁽⁴⁾ The Right-in/Right-out from the south already exists at Station 230+65. This connection may be shifted west to any point between Stations 226+30 and 230+65 if proven not to be a traffic safety hazard.

ROAD-ACCESS PLAN TO BEN HILL GRIFFIN PKWY. MAP 3L CORKSCREW THREE OAKS PKWY.

MAP 3L - PAGE 1 OF 3 (ADDED 8Y ORDINANCE # O3 - O5) 020802901.DWG

Director: Scott M. Gilbertson P.E.



MAP 3L CORKSCREW ROAD-ACCESS PLAN THREE OAKS PKWY. TO BEN HILL GRIFFIN PKWY.

MAP 3L - PAGE 2 OF 3 (ADDED BY ORDINANCE # 03 - 05) 020802902.DWG

Director: Scott M. Gilbertson P.E.

SOUTHWEST FLORIDA DEPARMENT of TRANSPORTATION

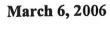
MAP 3L ROAD-ACCESS PLAN TO BEN HILL GRIFFIN PKWY. CORKSCREW OAKS PKWY. THREE

020802903.DWG

APPENDIX 2

CORKSCREW ROAD TRAFFIC OPERATIONS ASSESSMENT

<u>DATED MARCH 6, 2006</u>


CORKSCREW ROAD TRAFFIC OPERATIONS ASSESSMENT

Project #06508

Prepared by:

DAVID PLUMMER & ASSOCIATES, INC.

1531 Hendry Street Fort Myers, Florida 33901

CORKSCREW ROAD TRAFFIC OPERATIONS ASSESSMENT

Background

The Miromar Outlets is an existing factory outlets retail center in South Lee County. The Miromar Outlets is located in the northwest quadrant of the intersection of Corkscrew Road and Ben Hill Griffin Parkway, on the north side of Corkscrew Road between I-75 and Ben Hill Griffin Parkway, Exhibit 1.

Miromar Outlets is approved for a total of 700,000 square feet of commercial space. The existing Miromar Outlets consists of approximately 480,000 square feet of development. The remaining 220,000 square feet at the Miromar Outlets is anticipated to be built out by the year 2010.

Access to the Miromar Outlets includes a full median opening (Miromar North Entrance) and a directional median opening (Miromar South Entrance) onto Ben Hill Griffin Parkway and a directional median opening onto Corkscrew Road. In addition, there is an internal connection to the Germain Arena, which is to the north of Miromar Outlets.

The directional median opening onto Corkscrew Road is located approximately 1,600 feet east of the I-75 east ramps and 660 feet west of the Ben Hill Griffin Parkway intersection. Traffic operational problems have been experienced on Corkscrew Road between I-75 and Ben Hill Griffin Parkway.

This traffic study has been prepared to assess the operations of Corkscrew Road, from just west of I-75 to just east of Ben Hill Griffin Parkway, under various access management scenarios for the Miromar Outlets entrance, and recommend improvements that could alleviate the operational problems and enhance the performance of Corkscrew Road.

Executive Summary

This traffic study has been prepared to assess the operations of the Corkscrew Road corridor from just west of I-75 to just east of Ben Hill Griffin Parkway. This corridor is comprised of the I-75 ramps, Miromar Outlets directional median opening, and the intersection of Ben Hill Griffin Parkway. In addition, there is a right-in/right-out driveway on the south side of Corkscrew Road, between the I-75 east ramps and the Miromar Outlets directional median opening. This driveway serves the Miromar International Design Center.

Synchro 6, which is used in traffic modeling and simulation, was used to assess the performance of Corkscrew Road. Since the buildout of the Miromar Outlets is anticipated by year 2010, the year 2010 was considered as the horizon year for the purposes of this analysis. The arterial analysis for Corkscrew Road, under future 2010 conditions, was conducted for various access

management scenarios and the results are summarized in this report. These scenarios included the following:

- <u>Scenario 1:</u> Maintain existing access conditions with the existing directional median opening at the Miromar Outlets.
- Scenario 2: Convert the Miromar Outlets directional median opening to a right-in/right-out access only.
- Scenario 3: Maintain the directional median opening at the Miromar Outlets and signalize the eastbound left-turn movement.
- Scenario 4: Move the directional median opening at the Miromar Outlets to the west, provide dual eastbound left-turn lanes, and signalize the eastbound left-turn movement.
- Scenario 5: Maintain the existing directional median opening at the Miromar Outlets and prohibit southbound right-turn-on-red (RTOR) movements at the Corkscrew Road/Ben Hill Griffin Parkway intersection.

A comparison of the "measures of effectiveness" for the five scenarios is summarized below.

Comparison of Measures of Effectiveness

Measure of Effectiveness	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Total Delay/Vehicle (Sce/Veh)	24	24	23	24	24
Total Delay (Hours)	77	80	. 75	76	77
Stops/Vehicle	0.76	0.47	0.52	0.54	0.76
Stops	8,807	5,658	6,042	6,238	8,807
Performance Index	101	95	92	93	101
Dark and America Const (MDIT)	26.2	27.2	25.3	25.1	26.2
Eastbound Average Speed (MPH)	10000	27.2 C	23.3 C	23.1 C	C C
Eastbound Arterial LOS	C				
Westbound Average Speed (MPH)	19.4	19.3	18.5	18.3	19.4
Westbound Arterial LOS	D	D	D	D	D
Corkscrew Road/Ben Hill Griffin					
Pkwy. Intersection Delay (sec)/LOS	34.4/C	43.9/D	34.2/C	34.3/C	67.8/E
Ben Hill Griffin Pkwy/ Miromar North Entrance Intersection	14.9/B	16.9/B	14.9/B	14.8/B	15.1/B
Delay (sec)/LOS					

Based on the evaluations presented in this report, it is concluded that converting the Miromar Outlets directional median opening on Corkscrew Road to a right-in/right-out movement only will adversely impact the traffic operations at the Corkscrew Road/Ben Hill Griffin Parkway and Ben Hill Griffin Parkway/Miromar North Entrance intersections by increasing the intersection delay by approximately 13% to 28%.

Signalizing the directional median opening (the eastbound left-turn movement entering the Miromar Outlets) will reduce the total delay and delay per vehicle on Corkscrew Road, maintain the arterial level of service (LOS) at LOS "C" in the eastbound and LOS "D" in the westbound direction, and result in the best performance index of the five alternatives.

Roadway Network

The existing roadway network in the vicinity of the Miromar Outlets is portrayed in Exhibit 1. The major roadways in the vicinity of the Miromar Outlets include I-75, Corkscrew Road and Ben Hill Griffin Parkway.

I-75 is a Florida DOT maintained four-lane Interstate Highway for the purposes of regional travel. Corkscrew Road is an east/west four-lane divided arterial in South Lee County connecting various north/south arterials, including US 41, Three Oaks Parkway and Ben Hill Griffin Parkway, to Interstate 75. Ben Hill Griffin Parkway is a four and six lane divided arterial roadway between Alico Road and Corkscrew Road.

Corkscrew Road

Corkscrew Road is four-lane divided roadway between US 41 and Ben Hill Griffin Parkway. It is a two-lane undivided roadway east of Ben Hill Griffin Parkway. Traffic operational problems have been experienced on Corkscrew Road, between I-75 and Ben Hill Griffin Parkway, and, in particular, at the I-75 ramps, the Miromar Outlets Entrance, and Ben Hill Griffin Parkway.

As part of this traffic study, the segment of Corkscrew Road from just west of I-75 to just east of Ben Hill Griffin Parkway is analyzed. This corridor is comprised of the I-75 ramps, Miromar Outlets directional median opening, and the intersection of Ben Hill Griffin Parkway, Exhibit 2. In addition, there is a right-in/right-out driveway on the south side of Corkscrew Road, between the I-75 east ramps and the Miromar Outlets directional median opening, into the Miromar International Design Center.

Committed Improvements

There are several roadway improvements scheduled for construction in the general vicinity of Miromar Outlets. Some of the more significant roadway improvement projects include the following.

- Corkscrew Road: Four-lane widening from Ben Hill Griffin Parkway to The Habitat Entrance Fiscal Year 2006.
- Three Oaks Parkway Extension South: New four-lane roadway from East Terry Street to Bonita Bill Drive Fiscal Year 2006.
- Estero Parkway Extension: New four-lane roadway from Three Oaks Parkway to Ben Hill Griffin Parkway Fiscal Year 2006.
- Alico Road: Six-lane widening from east of US 41 to Three Oaks Parkway Under Construction.
- I-75: Six-lane widening from south of Bonita Beach Road to Daniels Parkway Fiscal Year 2008.
- I-75/Alico Interchange: Interchange Reconstruction Under Construction.

The 2010 existing plus committed (E+C) roadway network used in this analysis reflects the above improvements.

Future Traffic Volumes

There is significant development along Corkscrew Road east of I-75. Miromar Outlets, which is located on the north side of Corkscrew Road between I-75 and Ben Hill Griffin Parkway, is an existing factory outlets retail center (Exhibit 1). It is approved for a total of 700,000 square feet of commercial space. The existing Miromar Outlets consists of approximately 480,000 square feet of development. The remaining 220,000 square feet is anticipated to be built out by the year 2010.

In addition to the Miromar Outlets, there are several other significant developments along Corkscrew Road and Ben Hill Griffin Parkway, including the Stoneybrook DRI (including the Miromar International Design Center), The Habitat, the Timberland and Tiburon DRI, Miromar Lakes DRI, Gulf Coast Town Center DRI, and Florida Gulf Coast University.

Miromar Outlets is anticipated to be built out by the year 2010. In addition, most of the above developments will be built out by 2010. Therefore, the year 2010 was considered as the horizon year for the purposes of this analysis.

Future 2010 traffic volume projections for the Corkscrew Road corridor were derived from a number of available sources, including the DRI traffic studies. Those traffic studies were previously submitted, reviewed, and accepted by the County and other review agencies. A list of all the traffic studies used in developing the future 2010 traffic volumes is provided Appendix A. The future 2010 traffic projections for the Miromar Outlets were based on the current development, existing traffic counts and the anticipated buildout development. A copy of the

most recent traffic counts conducted at the Miromar Outlets entrances is provided as part of Appendix B.

The future 2010 peak hour traffic volumes at the intersections along Corkscrew Road are summarized in Exhibit 3.

Alternative Scenarios

Synchro 6 was used to evaluate the performance of Corkscrew Road under various access management scenarios. The Synchro 6 roadway network was developed for Corkscrew Road from just west of I-75 south ramps to just east of Ben Hill Griffin Parkway (Exhibit 2).

The future 2010 peak hour traffic volumes at these intersections are summarized in Exhibit 3. Depending on the individual scenario, some specific turning movements were adjusted, when needed. For example, if the Miromar directional median opening on Corkscrew Road was limited to a right-in/right-out movement only, the eastbound left-turn volumes were shifted to the Corkscrew Road/Ben Hill Griffin Parkway intersection and then added to the Miromar North and South Entrances on Ben Hill Griffin Parkway as northbound left-turn movements.

A total of five different scenarios were developed and tested for Corkscrew Road. These scenarios are identified below.

- <u>Scenario 1:</u> Maintain existing access conditions with the existing directional median opening at the Miromar Outlets.
- <u>Scenario 2:</u> Convert the Miromar Outlets directional median opening to a right-in/right-out access only.
- Scenario 3: Maintain the directional median opening at the Miromar Outlets and signalize the eastbound left-turn movement.
- Scenario 4: Move the directional median opening at the Miromar Outlets to the west, provide dual eastbound left-turn lanes, and signalize the eastbound left-turn movement.
- <u>Scenario 5:</u> Maintain the existing directional median opening at the Miromar Outlets and prohibit southbound right-turn-on-red (RTOR) movements at the Corkscrew Road/Ben Hill Griffin Parkway intersection.

Scenarios 3 and 4 were tested with a traffic signal for the eastbound left-turn movement at the Miromar Outlets directional median opening. This signal is intended to facilitate the heavy eastbound left-turn movement entering the Miromar Outlets during the peak hours. The signal will not interfere with the continuous flow of eastbound traffic on Corkscrew Road. Also, there will be no separate green phase for the southbound traffic, except when the eastbound left turn is

protected, since it is a right turn outbound movement only. Therefore, it is not a typical full signal.

Arterial Analysis

For the various scenarios, an arterial analysis was performed for Corkscrew Road using Synchro 6. Synchro 6 is a traffic simulation and modeling software that replicates the signalized intersection capacity analysis as specified in the 2000 Highway Capacity Manual. Also, it has the ability to assess the arterial performance with respect to the traffic signal coordination and signal timing optimization.

For each scenario, the intersection offsets were optimized using Synchro 6, in order to provide the best possible arterial flow on Corkscrew Road. Various Measures of Effectiveness (MOE) were evaluated on an arterial level as well as a network level. The more relevant arterial and network wide MOE's included: performance index (PI); delay per vehicle; total delay hours; arterial level of service; and arterial speeds. In addition, the Corkscrew Road/Ben Hill Griffin Parkway and Ben Hill Griffin Parkway/Miromar North Entrance intersection operations were evaluated.

The various MOE's and arterial analysis results are summarized for each scenario in Exhibits 4 thru 8 for Scenario 1 thru 5, respectively. A comparison of the scenarios is presented in Exhibit 9 and summarized below.

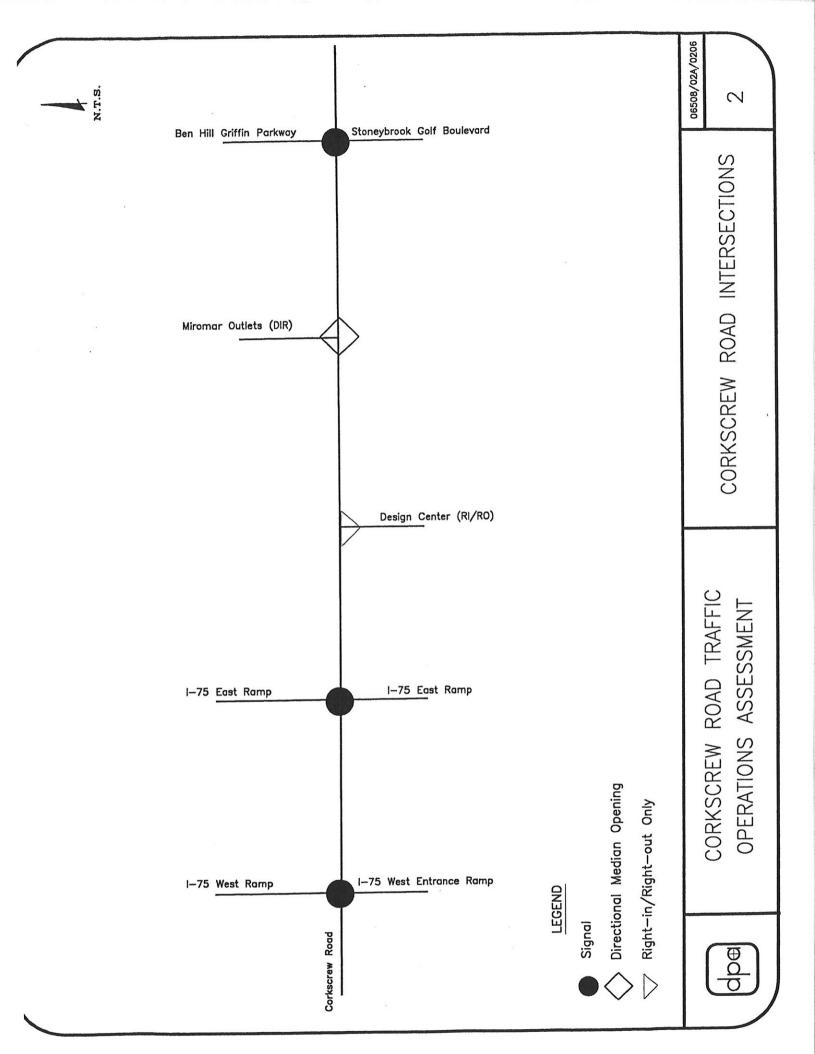
Comparison of Measures of Effectiveness

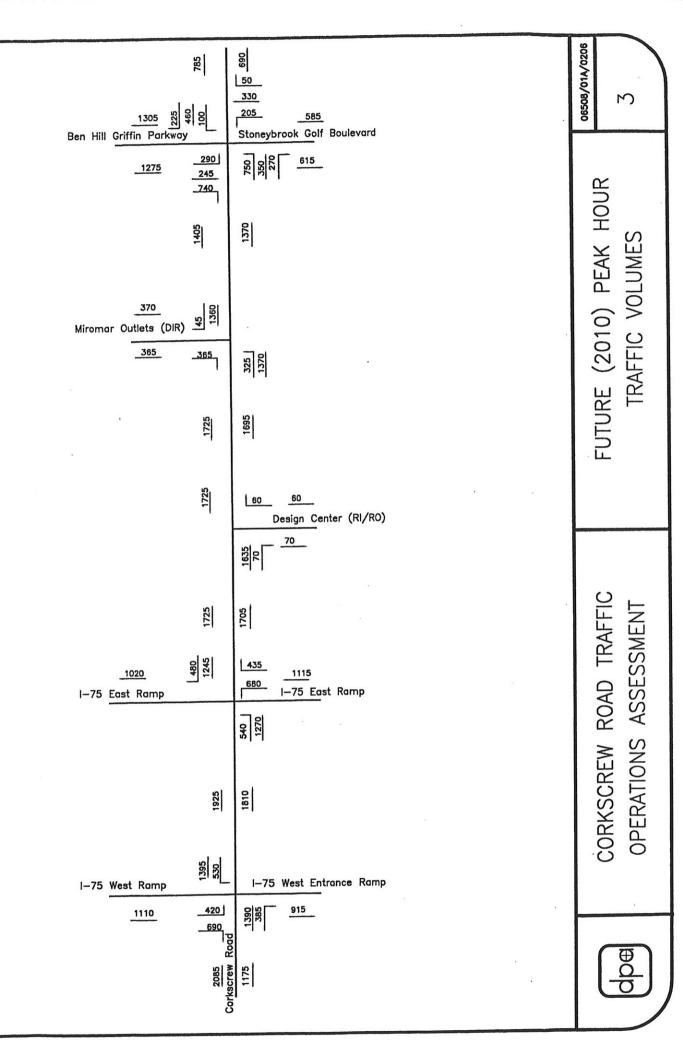
Measure of Effectiveness	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Total Delay/Vehicle (Sce/Veh)	24	24	23	24	24
Total Delay (Hours)	77	80	75	76	77
Stops/Vehicle	0.76	0.47	0.52	0.54	0.76
Stops	8,807	5,658	6,042	6,238	8,807
Performance Index	101	95	92	93	101
					26.2
Eastbound Average Speed (MPH)	26.2	27.2	25.3	25.1	26.2
Eastbound Arterial LOS	C	C	С	С	С
Westbound Average Speed (MPH)	19.4	19.3	18.5	18.3	19.4
Westbound Arterial LOS	D	D	D	D	D
Corkscrew Road/Ben Hill Griffin					
Pkwy. Intersection Delay (sec)/LOS	34.4/C	43.9/D	34.2/C	34.3/C	67.8/E
Thwy. Intersection Belly (666), 265					
Ben Hill Griffin Pkwy/ Miromar	14 O/D	16.9/B	14.9/B	14.8/B	15.1/B
North Entrance Intersection	14.9/B	10.9/15	14.5/10	14.0/1	13.172
Delay (sec)/LOS					

As shown in the above and Exhibit 9, the findings are as follows.

- 1. Total delay per vehicle was 24 seconds for all the scenarios, except for Scenario 3. Scenario 3 (signalized eastbound left-turn movement at the Miromar Outlets directional median opening) produced a slightly lower delay per vehicle of 23 seconds.
- 2. Total delay on Corkscrew Road varied from 75 hours to 80 hours, for Scenarios 1 to 5. Scenario 3 (signalized eastbound left-turn movement at the Miromar Outlets directional median opening) produced the lowest delay of 75 hours and Scenario 2 (converting the Miromar Outlet directional to a right-in/right-out only) produced the highest delay of 80 hours. (The higher delay for Scenario 2 can be attributed to the heavy eastbound left-turn volumes at the Corkscrew Road and Ben Hill Griffin Parkway intersection).
- 3. The Performance Index (PI), indicating the combined effect of delay, stops and queuing, varied from 92 to 101 for Scenarios 1 to 5. Scenario 3 (signalized eastbound left-turn movement at the Miromar Outlets directional median opening) produced the best (lowest) PI value of 92 and Scenario 1 and Scenario 5 (existing access and no RTOR at Corkscrew Road/Ben Hill Griffin Parkway intersection) produced the worst (highest) PI value of 101.
- 4. Based on arterial speeds, Corkscrew Road operated at LOS "C" in the eastbound direction and LOS "D" in the westbound direction for all scenarios.
- 5. At the Corkscrew Road/Ben Hill Griffin Parkway intersection, the intersection signal delay was approximately 28% higher for Scenario 2 (convert the Miromar Outlets directional to a right-in/right-out movement only) than Scenario 1 (existing access) and Scenario 3 (signalized eastbound left-turn movement at the Miromar Outlets directional median opening).
- 6. At the Ben Hill Griffin Parkway/Miromar North Entrance intersection, the intersection signal delay was approximately 13% higher for Scenario 2 (convert the Miromar Outlets directional to a right-in/right-out movement only) than Scenario 1 (existing access) and Scenario 3 (signalized eastbound left-turn movement at the Miromar Outlets directional median opening).
- 7. Scenarios 3 and 4 produced similar MOE's in terms of PI, delay per vehicle, arterial speeds and LOS.

Synchro 6 MOE reports and arterial levels of service reports are provided as part of Appendix C.


Conclusions


The conclusions of this traffic study are summarized below.

- 1. Miromar Outlets, which is located on the north side on Corkscrew Road between I-75 and Ben Hill Griffin Parkway, is an existing factory outlets retail center. It is approved for 700,000 square feet of commercial development with a buildout of 2010.
- 2. Access to Miromar Outlets includes a directional median opening onto Corkscrew Road, which is located approximately 1,600 feet east of the I-75 east ramps and 660 feet west of the Ben Hill Griffin Parkway intersection. Traffic operational problems have been experienced on Corkscrew Road, between the I-75 ramps and Ben Hill Griffin Parkway.
- 3. Based on the detailed arterial analysis, it is concluded that converting the Miromar Outlets directional median opening to a right-in/right-out movement only will adversely effect the operations of the Corkscrew Road/Ben Hill Griffin Parkway and the Ben Hill Griffin Parkway/Miromar North Entrance intersections by increasing the intersection delay by approximately 13% to 28%.
- 4. Signalizing the eastbound left-turn movement entering the Miromar Outlets will reduce the total delay and delay per vehicle on Corkscrew Road, while maintaining the arterial level of service at LOS "C" in the eastbound and LOS "D" in the westbound direction. In addition, this scenario produced the best (lowest) Performance Index value.

TRAFFIC OPERATIONS ASSESSMENT

N.T.S.

EXHIBIT 4 CORKSCREW ROAD TRAFFIC OPERATIONS ASSESSMENT

(1,2)

Scenario 1: Measures of Effectiveness

Corkscrew Road

Measure of Effectiveness

Total Delay/Vehicle	24	Sec/Veh
Total Delay	77	Hours
Stops/Vehicle	0.76	
Stops	8,807	
Performance Index	101	
Average Speed (EB)	26.20	Mph
Arterial LOS (EB)	С	•
Average Speed (WB)	19.40	Mph
Arterial LOS (WB)	D	

Intersection Analyses

Intersection	Dealy (sec)	LOS
Corkscrew Road/Ben Hill Griffin Parkway	34.4	С
Ben Hill Griffin Parkway/Miromar	14.9	В

- (1) Scenario 1: Existing access, with existing directional median opening at the Miromar Outlets.
- (2) Based on the detailed measures of effectiveness report from Synchro 6 (Please refer to Appendix C).

EXHIBIT 5 CORKSCREW ROAD TRAFFIC OPERATIONS ASSESSMENT

(1,2)

Scenario 2: Measures of Effectiveness

Corkscrew Road

Measure of Effectiveness

Total Delay/Vehicle	24 Sec/Veh
Total Delay	80 Hours
Stops/Vehicle	0.47
Stops	5,658
Performance Index	95
Average Speed (EB)	27.2 Mph
Arterial LOS (EB)	С
Average Speed (WB)	19.3 Mph
Arterial LOS (WB)	D

Intersection Analyses

Intersection	Dealy (sec)	LOS
Corkscrew Road/Ben Hill Griffin Parkway	43.9	D
Ben Hill Griffin Parkway/Miromar	16.9	В

- (1) Scenario 2: Convert the Miromar Outlets directional median opening to a right-in/right-out access only.
- (2) Based on the detailed measures of effectiveness report from Synchro 6 (Please refer to Appendix C).

EXHIBIT 6 CORKSCREW ROAD TRAFFIC OPERATIONS ASSESSMENT

(1,2)

Scenario 3: Measures of Effectiveness

Corkscrew Road

Measure of Effectiveness

Total Delay/Vehicle	23	Sec/Veh
Total Delay	75	Hours
Stops/Vehicle	0.52	
Stops	6,042	
Performance Index	92	
Average Speed (EB)	25.3	Mph
Arterial LOS (EB)	С	
Average Speed (WB)	18.5	Mph
Arterial LOS (WB)	D	

Intersection Analyses

Intersection	Dealy (sec)	LOS
Corkscrew Road/Ben Hill Griffin Parkway	34.2	С
Ben Hill Griffin Parkway/Miromar North Entrance	14.9	В

- (1) Scenario 3: Signalized eastbound left-turn movement at the Miromar Outlets directional median opening.
- (2) Based on the detailed measures of effectiveness report from Synchro 6 (Please refer to Appendix C).

EXHIBIT 7 CORKSCREW ROAD TRAFFIC OPERATIONS ASSESSMENT

(1,2)

Scenario 4: Measures of Effectiveness

Corkscrew Road

Measure of Effectiveness

Total Delay/Vehicle	24 Sec/Veh
Total Delay	76 Hours
Stops/Vehicle	0.54
Stops	6,238
Performance Index	93
Average Speed (EB)	25.1 Mph
Arterial LOS (EB)	С
Average Speed (WB)	18.3 Mph
Arterial LOS (WB)	D

Intersection Analyses

Intersection	Dealy (sec)	LOS
Corkscrew Road/Ben Hill Griffin Parkway	34.3	С
Ben Hill Griffin Parkway/Miromar North Entrance	14.8	В

- (1) Scenario 4: Move the directional median opening at Miromar Outlets provide dual eastbound left-turn lanes and signalize the movement.
- (2) Based on the detailed measures of effectiveness report from Synchro 6 (Please refer to Appendix C).

EXHIBIT 8 CORKSCREW ROAD TRAFFIC OPERATIONS ASSESSMENT

(1,2)

Scenario 5: Measures of Effectiveness

Corkscrew Road

Measure of Effectiveness

Total Delay/Vehicle	24 Sec/Veh
Total Delay	77 Hours
Stops/Vehicle	0.76
Stops	8,807
Performance Index	101
Average Speed (EB)	26.2 Mph
Arterial LOS (EB)	С
Average Speed (WB)	19.4 Mph
Arterial LOS (WB)	D

Intersection Analyses

Intersection	Dealy (sec)	LOS
Corkscrew Road/Ben Hill Griffin Parkway	67.8	Е
Ben Hill Griffin Parkway/Miromar North Entrance	15.1	В

- (1) Scenario 5: Existing access, with existing directional median opening at the Miromar Outlets and no southbound RTOR movement at Corkscrew Road/Ben Hill Griffin Parkway intersection.
- (2) Based on the detailed measures of effectiveness report from Synchro 6 (Please refer to Appendix C).

EXHIBIT 9 CORKSCREW ROAD TRAFFIC OPERATIONS ASSESSMENT

(1)

Comparison of Measures of Effectiveness

Corkscrew Road

		(2)	(3)	(4)	(5)	(6)
Measure of Effectiveness		Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Total Delay/Vehicle	Sec/Veh	24	24	23	24	24
Total Delay	Hours	77	80	75	76	77
Stops/Vehicle		0.76	0.47	0.52	0.54	0.76
Stops		8,807	5,658	6,042	6,238	8,807
Performance Index		101	95	92	93	101
Average Speed (EB)	Mph	26.20	27.2	25.3	25.1	26.2
Arterial LOS (EB)		С	С	С	С	С
Average Speed (WB)	Mph	19.40	19.3	18.5	18.3	19.4
Arterial LOS (WB)	80x	D	D	D	D	D

Intersection Analyses

Intersection	(2) Scenario 1	(3) Scenario 2	(4) Scenario 3	(5) Scenario 4	(6) Scenario 5
Corkscrew Road/Ben Hill Griffin Parkway (Delay in Sec/LOS)	34.4/C	43.9/D	34.2/C	34.3/C	67.8/E
Ben Hill Griffin Parkway/Miromar North Entrance (Delay in Sec/LOS)	14.9/B	16.9/B	14.9/B	14.8/B	15.1/B

- (1) Based on detailed measures of effectiveness reports, arterial performance reports and intersection reports from Synchro 6.
- (2) Scenario 1: Existing access, with existing directional median opening at the Miromar Outlets.
- (3) Scenario 2: Convert the Miromar Outlets directional median opening to a right-in/right-out access only.
- (4) Scenario 3: Signalized eastbound left-turn movement at the Miromar Outlets directional median opening.
- (5) Scenario 4: Move the directional median opening at the Miromar Outlets west, provide dual eastbound left-turn lanes and signalize the movement.
- (6) Scenario 5: Existing access, with existing directional median opening at Miromar Outlets and no southbound RTOR movement at the Corkscrew Road/Ben Hill Griffin Parkway intersection.

APPENDIX A SOURCE INFORMATION 2010 FUTURE TRAFFIC VOLUMES

CORKSCREW ROAD TRAFFIC OPERATIONS ASSESSMENT

TRAFFIC STUDIES REFERENCED IN DEVELOPING FUTURE 2010 TRAFFIC VOLUMES

- 1. <u>Gulf Coast Town Center Local Development Order Master Traffic Impact Statement,</u> dated February 11, 2004.
- 2. <u>Miromar Lakes DRI Application For Development Approval, Sufficiency Response VI, Question 21. Transportation</u>, dated June 19, 1998.
- 3. <u>Florida Gulf Coast University (FGCU)Enrollment and Degree Planning Committee</u> Report, dated June 17, 2004.
- 4. <u>Final Traffic Memorandum, Koreshan Boulevard Extension, CN-01-17, From Three Oaks Parkway to Ben Hill Griffin Parkway, Lee County, dated April, 2003.</u>
- 5. <u>Miromar Lakes Boulevard/Ben Hill Griffin Parkway Traffic Signal Warrant Analysis</u>, May 2, 2005.
- 6. The Shoppes At Grande Oaks Parcel 3 Local Development Order Traffic Impact Statement, dated Revised June 17, 2003.
- 7. Miromar Square CPD Traffic Impact Statement, dated January 11, 2005.
- 8. Miromar Outlets Phase V Traffic Impact Statement, dated October 13, 2005.
- 9. <u>Miromar Outlets North Entrance / Ben Hill Griffin Parkway Traffic Signal Warrant Analysis</u>, dated May 2, 2005.
- 10. Humphrey Trust Parcel At Timberland & Tiburon Traffic Study, dated July 16, 2001.

APPENDIX B MIROMAR OUTLETS TRAFFIC COUNTS

DITAID I POISIISIEU MY 1000011 11 FO SUMMARY OF VEHICLE MOVEMENTS

Corkscrew @ Miromar Outlets .OCATION:

: YTNUOS Lee CITY:

VEATHER: Good

Fort Myers 09/07/05 DATE:

ROADCO	NOITION												-	\A.	FATA	OL IN		
TIN	ME	NC	ORTHE	BOUN	ND	SO	UTHB	OUNI)	E	ASTBO	DUND	1	VV	ESTB			GRAND
3EGIN	END	L	T	R	Total	L	T	R	Total	L	T		Total	L	T	R	Total	TOTAL
7:00 AM	07:15 AM	0	0	0	0	0	0	7	7	13	115	0	128	0	124	5	129	264
7:15 AM	07:30 AM	0	0	0	0	0	0	8	8	14	123	0	137	0	171	5	176	321
7:30 AM	07:45 AM	0	0	0	0	0	0	10	10	11	142	0	153	0	172	4	176	339
7:45 AM	08:00 AM	0	0	0	0	0	0	9	9	15	157	0	172	0	184	8		373
08:00 AM	08:15 AM	0	0	0	0	0	0	15	15	17	163	0	180	0	140	5	145	340
8:15 AM	08:30 AM	0	0	0	0	0	0	18	18	24	155	0	179	0	150	6	156	353
18:30 AM	08:45 AM	0	0	0	0	0	0	14	14	32	140	0	172	0	143	7	150	336
8:45 AM	09:00 AM	0	0	0	0	0	0	16	16	39	135	0	174	0	144	9		343
19:00 AM	09:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
19:15 AM	09:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
9:30 AM	09:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
9:45 AM	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
0:00 AM	10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
0:15 AM	10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
0:30 AM	10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
0:45 AM	11:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
	11:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		- 0
1:15 AM	11:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1:30 AM	11:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
1:45 AM	12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
2:00 PM	12:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
2:15 PM	12:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
2:30 PM	12:45 PM	0	0	0	0	0	0	0	0	0	0	0		0	0	0		
2:45 PM	01:00 PM	0	0	0	0	0	0	0	0	0	0	0		0	0	0	-	
1:00 PM	01:15 PM	0	0	0	0	0	0	0	0	0	0	0		0	0	0		
1:15 PM	01:30 PM	0	0	0	0	0	0	0	0	0	0	0		0	0	0		
1:30 PM	01:45 PM	0	0	0	0	0	0	0	0	0	0	0		0	0	0		
1:45 PM	02:00 PM	0	0	0	0	0	0	0	0	0	0	0		0	0	0		
2:00 PM	02:15 PM	0	0	0	0	0	0	0	0	0	0	0		0	0		-	
2:15 PM	02:30 PM	0	0	0	0	0	0	0	0	0	0	0		0				
2:30 PM	02:45 PM	0	0	0	0	0	0	0	0	0	0	0		0	0			
2:45 PM	03:00 PM	0	0	0	0	0	0	0		0	0	0		0	0			
3:00 PM	03:15 PM	0	0	0	0	0	0	0		0	0	0		0	0			
3:15 PM	03:30 PM	0	0	0	0	0	0	0		0	0	0		0	0			
3:30 PM	03:45 PM	0	0	0	0	0	0	0		0	0	0		0	0			
3:45 PM	04:00 PM	0	0	0	0	0	0	0	0	0	0	0			0			
4:00 PM	04:15 PM	0	0	0	0	0	0		44		170	0						
4:15 PM	04:30 PM	0	0	0	0	0	0	51	51	33	164	0		1	141			
	04:45 PM	0	0	0	0	0	0				213	0	1		152			
	05:00 PM	0	0	0	0	0	0			49	227	0			162	6		
	05:15 PM	0	0	0	0	0	0	64	64	56	214	0			201			
	05:30 PM	0	0	0	0	0	0	55			211	0			163			
	05:45 PM	0	0	0	0	0	0				248	0	1		157			
	06:00 PM	0	0	0	0	0	0	57	57	41	239	0	280	0	136	9	145	482
		-		_			-	-										

DAVID FLUIVIIVIER & AGGOOGIA I LO HOURLY SUMMARY OF VEHICLE MOVEMENTS

OCATION:

Corkscrew @ Miromar Outlets

: YTNUO:

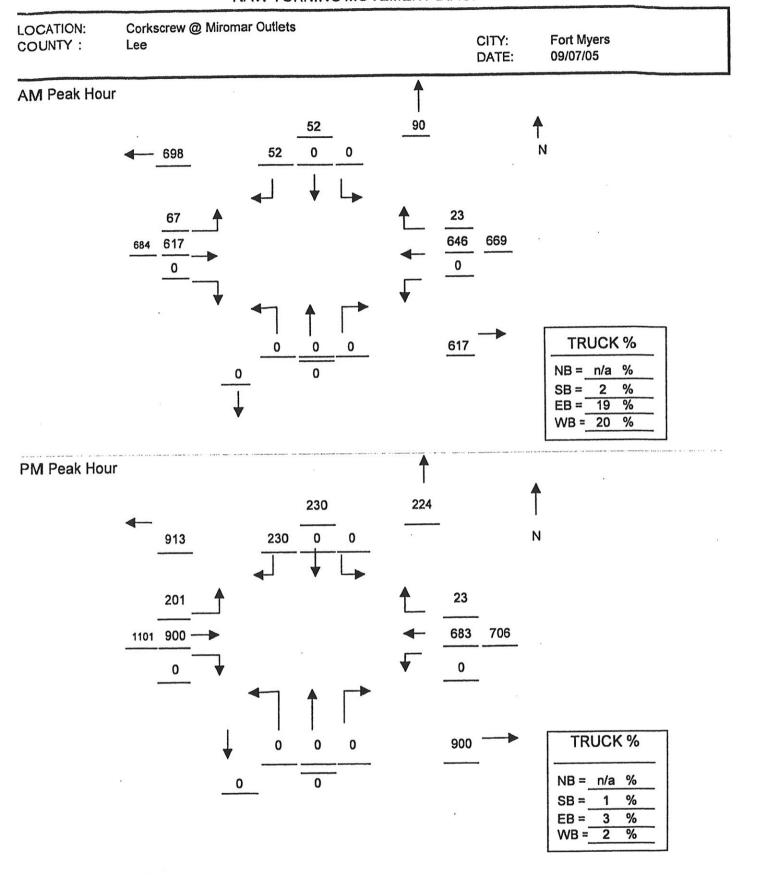
Lee

Good

CITY:

Fort Myers

REMARKS: 09/07/05


VEATHER:	Good
COAD CONDITIO	ON Good

TII	ME	N	ORTH	BOUI	ND	S	OUTHB	OUNE	,		EASTB	DUND		V	VESTB	OUN)	GRAND
IEGIN	END	L	Т	R	Total	L	Т	R	Total	L	Т	R	Total	L	Т	R	Total	TOTAL
7:00 AM	08:00 AM	0	0	0	0	0	0	34	34	53	537	0	590	0	651	22	673	1297
	09:00 AM	0	0	0	0	0	0	63	63	112	593	0	705	0	577	27	604	1372
	10:00 AM	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0
	11:00 AM	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
	12:00 PM	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
	01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	02:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	03:00 PM	. 0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
3:00 PM	04:00 PM	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	. 0	0	0
4:00 PM	05:00 PM	0	0	0	0	0	0	203	203	158	774	0	932	0	590	29	619	1754
	06:00 PM	0		-			0	225	225	193	912	0	1105	0	657	26	683	2013
0.0011	1			,	1													

DAVID PLUMMER & ASSOCIATES PEAK HOUR CALCULATIONS

PEAK HOUR SEGIN END	L	IORTH T	IBOUI R	ND Total	S	OUTHB T) Total	L	EASTB T		Total	L	WESTB T		O Total	GRAND TOTAL
M PEAK																	4400
7:30 AM 08:30 AM	0	0	0	0	0	0	52	52	67	617	0	684	0	646	23	669	1405
EAK HOUR FACTOR	1	#N/A				0.72				0.95				0.87			0.94
IIDDAY PEAK								$\neg \neg$									
2:00 PM 01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EAK HOUR FACTOR		#N/A				#N/A				#N/A				#N/A			#N/A
M PEAK			·														
4:45 PM 05:45 PM	0	0	0	0	0	0	230	230	201	900	0	1101	0	683	23	706	2037
EAK HOUR FACTOR	1	#N/A				0.90				0.92				0.86			0.94
													<u> </u>				

RAW TURNING MOVEMENT DIAGRAM

SUMMARY OF VEHICLE MOVEMENTS

Ben Hill Griffin @ South Miromar Outlets

OUNTY:
'EATHER:
OAD CONDI Lee

CITY: DATE:

Fort Myers 09/07/05

Good

DAD C	ONDITION					-					LOTO	OUND		14/	ESTB	OLIA		
TII	ME	NC	DRTH	BOU	ND	SC	UTHB	OUN	D	. E	ASTB			. ۷۷	_		- 1	GRAND
EGIN	END	L	T	R	Total	L	T		Total	L	T		Total	L	T	R	Total	TOTAL
1:00 AM	07:15 AM	4	60	8	72	7	71	3	81	0	0	4	4	0	0	4	4	161
1:15 AM	07:30 AM	3	70	9	82	8	88	3	99	0	0	5	5	0	0	4	4	190
1:30 AM	07:45 AM	4	94	17	115	12	79	5	96	0	0	9	9	0		7	1	227
':45 AM	08:00 AM	4	102	26	132	11	98	5	114	0	0	8	8	0	0	6	6	260
3:00 AM	08:15 AM	5	98	24	127	9	97	2	108	0	0	7	7	0	0	6	6	248
1:15 AM	08:30 AM	3	109	35	147	10	102	4	116	0	0	9	9	0	0	4	4	276
1:30 AM	08:45 AM	2	101	37	140	12	103	6	121	0	0	9	9	0	0	7	7	277
1:45 AM	09:00 AM	3	92	36	131	13	103	3	119	0	0	8	8	0	0	4		262
1:00 AM	09:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1:15 AM	09:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1:30 AM	09:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1:45 AM	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
1:00 AM	10:15 AM	0	0	0	0	0	0	0	0	0	0	0		0	0	0		0
:15 AM	10:30 AM	0	0	0	0	0	0	0	0	0	0	0		0	0	0		0
:30 AM	10:45 AM	0	0	0	0	0	0	0	0	0	0	0		0	0	0		0
:45 AM	11:00 AM	0	0	0	0	0	0	0	0	0	0	0		0	0	0		0
:00 AM	11:15 AM	0	0	0	0	0	, 0	0	0	0	0	0		0	0	0		0
:15 AM	11:30 AM	0	0	0	0	0	0	0	0	0	0	0		0	0	0		0
:30 AM	11:45 AM	0	0	0	0	0	0	0			0	0		0	0	0		0
:45 AM	12:00 PM	0	0	0	0.000	0	0	0	0		0	0		0	0	0		0
:00 PM	12:15 PM	0	0	0		0	0	0	0		0	0		0	0	0		0
:15 PM	12:30 PM	0	0	0	0	0	0	0	0		0	0		0	0	0		0
:30 PM	12:45 PM	0	0	0	0	0	0	0	0		0	. 0		0	0	0	1	0
:45 PM	01:00 PM	0	0	0	0	0	0	0		0	0				0	0		0
:00 PM	01:15 PM	0	. 0	0	0	0	0	0			0				0	0		0
:15 PM	01:30 PM	0	0	0	0	0	0	0			0				0	0		0
:30 PM	01:45 PM	0	0	0	0	0	0	0	0		0				0	0		0
:45 PM	02:00 PM	0	0	0	0	0	0	0	0	0	0				0	0	1	0
:00 PM	02:15 PM	0	0	0	0	0	0	0	0	0	0				0	0	1	0
:15 PM	02:30 PM	0	0	0	0	0	0	0	0	0	0	0			0	0		
:30 PM	02:45 PM	0	0	0	0	0	0	0	0	0	0	0			0	0	1	
:45 PM	03:00 PM	0	0	0	0	0	0	0	0	0	0	0	0		0	0		
:00 PM	03:15 PM	0	0	0	0	0	0	0	0	0	0				0	0		
:15 PM	03:30 PM	0	0	0	0	0	0	0	0	0	0	C	0	0	0	C		
:30 PM	03:45 PM	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0		
:45 PM	04:00 PM	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0
:00 PM	04:15 PM	8	100	42	150	4	161	7	172	0								
	04:30 PM	99	99	46	244	7	162	9	178	0	0				0			
	04:45 PM	13	101	47	161	8	159	8	175	0	0				0			
	05:00 PM	15	102	51	168	9	158	7			0				0			386
	05:15 PM	17	96	48	161	9	146	13			0				0			
15 PM	05:30 PM	10	100	43	153	6	144	11			0				0			347
30 PM	05:45 PM	8	93	42	143	7	147	9	163	0	0				0			
	06:00 PM	9	94	35			143	8	155	0	0	15	15	0	0	8	8	316
	33.00																	And the state of t

DAVID PLUMMER & ASSOCIATES HOURLY SUMMARY OF VEHICLE MOVEMENTS

DCATION:

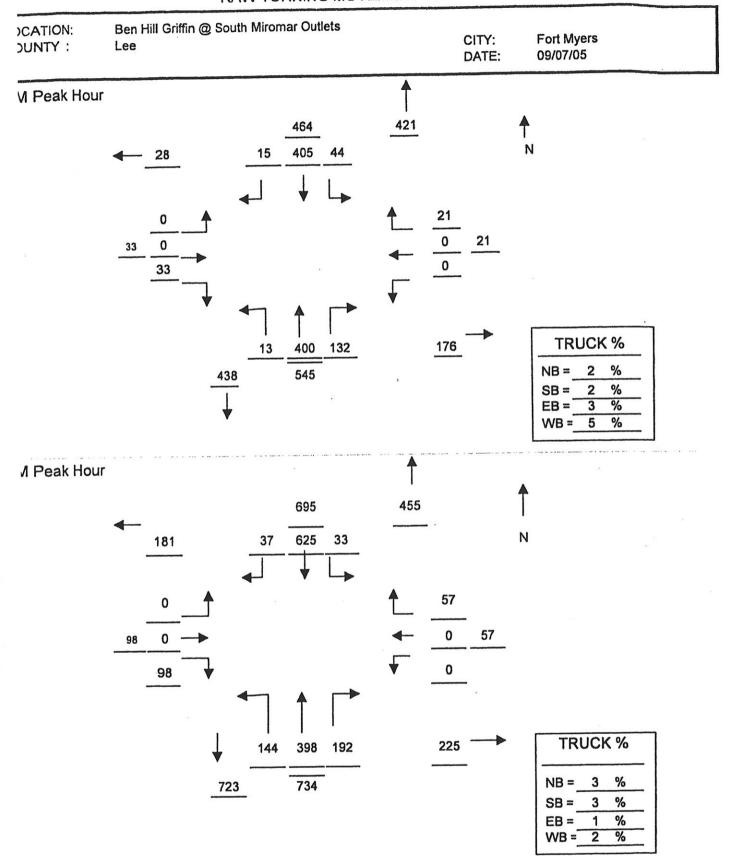
Ben Hill Griffin @ South Miromar Outlets

OUNTY: 'EATHER:

Good

CITY:

Fort Myers


REMARKS: 09/07/05

OAD CONDITION Good

TI	ME .	N	ORTH	BOU	ND	S	ОИТНВ	OUNE)		EASTB	OUND		٧	VESTE	OUNI	0	GRAND
EGIN	END	L	T	R	Total	L	T	R	Total	L	Т	R	Total	L	T ·	R	Total	TOTAL
':00 AM	08:00 AM	15	326	60	401	38	336	16	390	0	0	26	26	0	0	21	21	838
	09:00 AM	13	400	132	545	44	405	15	464	0	0	33	33	0	0	21	21	1063
3:00 AM	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	11:00 AM	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	12:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00 PM	01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
1:00 PM	02:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 PM	03:00 PM	0	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM	04:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
:00 PM	05:00 PM	135	402	186	723	28	640	31	699	0	0	106	106	0	0	55	55	1583
	06:00 PM	44	383	168	595	26	580	41	647	0	0	71	71	0	0	49	49	1362
																-		

DAVID PLUMMER & ASSOCIATES PEAK HOUR CALCULATIONS

PEAK HOUR EGIN END	L	ORTH T	IBOUI R	ND Total	S	OUTHB T) Total	L	EASTB T	OUND R	Total	L	WESTE T	OUNI R	D Total	GRAND TOTAL
√ PEAK																	
:00 AM 09:00 AM	13	400	132	545	44	405	15	464	0	0	33	33	0	0	21	21	1063
AK HOUR FACTOR		0.93				0.96				0.92				0.75			0.96
DDAY PEAK																	
:00 PM 01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AK HOUR FACTOR		#N/A				#N/A				#N/A				#N/A			#N/A
I PEAK																	
:15 PM 05:15 PM	144	398	192	734	33	625	37	695	0	0	98	98	0	0	57	57	1584
AK HOUR FACTOR		0.75				0.98				0.84				0.84			0.86
												لبييي					

DAVID I LUIVIIVILIN & AUSUUIA I LO SUMMARY OF VEHICLE MOVEMENTS

Ben Hill Griffin @ North Miromar Outlets OCATION:

COUNTY : Lee CITY: DATE: Fort Myers 09/07/05

NEATHER:

Good

ROADC	ONDITION	Good																
TI	ME	NO	ORTH	BOU	ND	SC	UTHE	BOUNI	0		EASTB	OUND		V	VESTE	OUN	D	GRAND
3EGIN	END	L	T	R	Total	L	T	R	Total	L	T	R	Total	L	T	R	Total	TOTAL
7:00 AM	07:15 AM	5	53	6	64	8	72	1	81	5	1	2	8	7	1	16	24	177
7:15 AM	07:30 AM	7	59	8	74	10	82	3	95	7	0	2	9	15	1	17	33	211
7:30 AM	07:45 AM	5	87	9	101	11	81	3	95	6	0	1	7	14	3	13	30	233
)7:45 AM	08:00 AM	8	93	7	108	15	93	4	112	4	2	4	10	17	4	10	31	261
08:00 AM	08:15 AM	9	87	8	104	13	90	2	105	8	1	5	14	13	2	12	27	250
)8:15 AM	08:30 AM	6	96	11	113	11	94	6	111	5	3	3	11	19 19	2	14	35	270
)8:30 AM	08:45 AM	11	88	9	108	15	97	8	120	7	2	5 6	14	18	8	15	34 41	276 271
)8:45 AM	09:00 AM	13	74	9	96	17	95	8	120									
9:00 AM	09:15 AM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
)9:15 AM	09:30 AM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
)9:30 AM	09:45 AM	0	0	0	0	0	.0		0	0	0	0	0	0	0	0	0	0
)9:45 AM	10:00 AM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0:00 AM	10:15 AM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0:15 AM	10:30 AM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0:30 AM	10:45 AM	0	0	0	0	0	0		0	- 0	0	0	- 0	0	0	0	0	0
0:45 AM	11:00 AM	0	- 0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1:00 AM	11:15 AM 11:30 AM	0	- 0	0	- 0	0	0		0	0	0	0	0	0	0	0	0	0
1:15 AM 1:30 AM	11:45 AM	0	0	0	0	0	0		0	0	o	0	Ō	0	0	0	0	0
1:45 AM	12:00 PM	0	0	0	0	0	0		0	0	ō	0	0	0	0	0	0	0
2:00 PM	12:15 PM	0	0	0	0	0	0		0	0	Ō	0	0	0	0	0	0	0
2:15 PM	12:30 PM	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	12:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM	01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:00 PM	01:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1:15 PM	01:30 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1:30 PM	01:45 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1:45 PM	02:00 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
2:00 PM	02:15 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
2:15 PM	02:30 PM	0	0	0	0	0	0		0		0	0	0	0	0	0	0	0
2:30 PM	02:45 PM	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0
2:45 PM	03:00 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
3:00 PM	03:15 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
3:15 PM	03:30 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
3:30 PM	03:45 PM	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
3:45 PM	04:00 PM	0																
4:00 PM	04:15 PM	8	103	2	113	24	140		168			9		23	5			372
	04:30 PM	11	97	5	113	22	151		178		5	13	40	14	7	31	52	383
	04:45 PM	9	100	3	112	18	136		159	24	8	14	46	25	4		56	373 377
	05:00 PM	12	104	3	119	19	142	6	167	17	11	15	43	17	2	29 31	48 50	374
	05:15 PM	13	96	2	111	26	137	8	171	23	7	12	42 54	19 21	0	23	45	369
	05:30 PM	12	101	4	117	24	125	4	153	31 22	8	15 16	47	16	1 2	19	37	342
	05:45 PM	7	93	2	102	19	131	6	156					22	2			338
5:45 PM	06:00 PM	10	87	5	102	21	119	5	145		<u>_</u>	14	43			_ 44	40	- 556

DAVID PLUIVIIVIER & ASSOCIATES HOURLY SUMMARY OF VEHICLE MOVEMENTS

LOCATION:

Ben Hill Griffin @ North Miromar Outlets

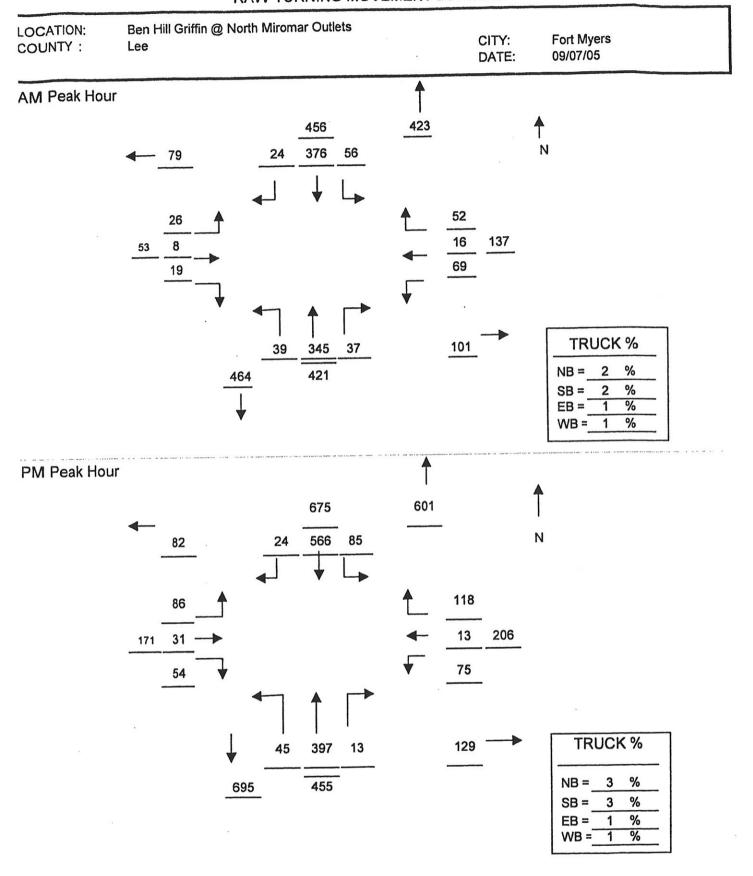
COUNTY: WEATHER: Lee

CITY:

Fort Myers

Good

REMARKS: 09/07/05


RO/	AD	COL	NDI	TI	Oh	Good	
	_		-		-	THE RESERVE TO THE PERSON NAMED IN	×

TI	ME	N	ORTH	BOU	ND	S	OUTHB	OUND	,		EASTB	DUND		٧	VESTB	OUNE)	GRAND
BEGIN	END	L	T	R	Total	L	Т	R	Total	L	T	R	Total	L	Т	R	Total	TOTAL
07:00 AM	08:00 AM	25	292	30	347	44	328	11	383	22	3	9	34	53	9	56	118	882
08:00 AM		39	345	37	421	56	376	24	456	26	8	19	53	69	16	52	137	1067
09:00 AM	10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00 AM		0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0	0
11:00 AM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00 PM	01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01:00 PM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0
02:00 PM		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03:00 PM	04:00 PM	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0
04:00 PM	05:00 PM	40	404	13	457	83	569	20	672	82	31	51	164	79	18	115	212	1505
05:00 PM		42		13		-	512	-	-	100	29	57	186	78	5	97	180	1423
												ı						

DAVID PLUMMER & ASSOCIATES PEAK HOUR CALCULATIONS

PEAK HOUR 3EGIN END	NORTHBOUND L T R Total			SOUTHBOUND L T R Total				EASTBOUND L T R Total				WESTBOUND L T R Total				GRAND TOTAL	
AM PEAK																	
08:00 AM 09:00 AM	39	345	37	421	56	376	24	456	26	8	19	53	69	16	52	137	1067
PEAK HOUR FACTOR		0.93				0.95				0.95				0.84			0.97
VIDDAY PEAK									÷								
12:00 PM 01:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PEAK HOUR FACTOR		#N/A				#N/A				#N/A				#N/A			#N/A
PM PEAK																	
04:15 PM 05:15 PM	45	397	13	455	85	566	24	675	86	31	54	171	75	13	118	206	1507
EAK HOUR FACTOR		0.96				0.95				0.93				0.92			0.98

RAW TURNING MOVEMENT DIAGRAM

APPENDIX C SYNCHRO ANALYSIS

DETAILED MEASURES OF EFFECTIVENESS

Multiple Timing Plan: PM Peak Hr.

Scenario Information

Scenario #1

Filename: G:\06508\Scenario 1.sy7

Location: Corkscrew Road Assessment, #06508

Data Date: 1/23/2006

Timing Plan ID: PM Peak Hr.

Alternative: Scenario 1: Existing Access Number of Signalized Intersections: 10 Most Popular Cycle Length: 120

Scenario #2

Filename: G:\06508\Scenario 2.sv7

Location: Corkscrew Road Assessment, #06508

Data Date: 1/23/2006

Timing Plan ID: PM Peak Hr.

Alternative: Scenario 2: Right-In/Right-Out Only

Number of Signalized Intersections: 10

Most Popular Cycle Length: 120

Scenario #3

Filename: G:\06508\Scenario 3.sy7

Location: Corkscrew Road Assessment, #06508

Data Date: 1/23/2006

Timing Plan ID: PM Peak Hr.

Alternative: Scenario 3: Directional Signal Number of Signalized Intersections: 11

Most Popular Cycle Length: 120

Scenario #4

Filename: G:\06508\Scenario 4.sy7

Location: Corkscrew Road Assessment, #06508

Data Date: 1/23/2006

Timing Plan ID: PM Peak Hr.

Alternative: Scenario 4: Directional Signal, Dual EBL

Number of Signalized Intersections: 11

Most Popular Cycle Length: 120

Scenario #5

Filename: G:\06508\Scenario 5.sy7

Location: Corkscrew Road Assessment, #06508

Data Date: 1/23/2006

Timing Plan ID: PM Peak Hr.

Alternative: Scenario 5: No SB RTOR at BHG

Number of Signalized Intersections: 10

Most Popular Cycle Length: 120

Corkscrew Road

Scenario#		2	. 3	4	5	
Control Delay / Veh (s/v)	23	24	23	23	23	
Queue Delay / Veh (s/v)	0	0	0	0	0:	
Total Delay / Veh (s/v)	24	24	23	24	24	
Total Delay (hr)	77	80	75	76	. 77	
Stops / Veh	0.76	0.47	0.52	0.54	0.76	
Stops (#)	8807	5658	6042	6238	8807	
Average Speed (mph)	21	21	21	. 21	21	
Total Travel Time (hr)	145	148	143	144	145	
Distance Traveled (mi)	3055	3096	3055	3043	3055	
Fuel Consumed (gal)	270	235	235	238	270	
Fuel Economy (mpg)	11.3	13.2	13.0	12.8	11.3	
CO Emissions (kg)	18.90	16.41	16.42	16.61	18.90	
NOx Emissions (kg)	3.68	3.19	3.19	3.23	3.68	
VOC Emissions (kg)	4.38	3.80	3.81	3.85	4.38	
Unserved Vehicles (#)	0	0	0	0	0	
Vehicles in dilemma zone (#)	201	201	281	276	201	
Performance Index	101.1	95.3	91.9	93.3	101.1	

ARTERIAL PERFORMANCE

Scenario 1: Existing Access
Timing Plan: PM Peak Hr.

Arterial Level of Service: EB Corkscrew Road

Gross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Fime (s)	Dist (mi)	Arterial Speed	Arterial LOS
I-75 SB Ram	ps II	45	47.2	28.4	75.6	0.59	28.1	В
I-75 NB Ram	ps II	45	12.3	5.4	17.7	0.11	22.9	C
Ben Hill Griffi	n Par II	45	42.9	27.3	70.2	0.49	25.0	C
Total	1		102.4	61.1	163.5	1.19	26.2	C

	Arterial Class S	Flow	是一位的 Made 1915年 中国的自由企业企业的 2016年 1916年 1	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Ben Hill Griffin Par	l .	45	44.9	59.7	104.6	0.51	17.6	D
I-75 NB Ramps	l ·	45	42.9	30.3	73.2	0.49	24.0	C
I-75 SB Ramps		45	12.3	15.7	28.0	0.11	14.5	ΕΕ
Total I	I		100.1	105.7	205.8	1.11	19.4	D

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel. Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
I-75 SB Ramps		45	47.2	28.4	75.6	0.59	28.1	В
I-75 NB Ramps	11	45	12.3	5.4	17.7	0.11	22.9	C
Ben Hill Griffin Par	Will characteristic	45	42.9	21.2	64.1	0.49	27.4	C
Total	11		102.4	55.0	157.4	1.19	27.2	С

Cross Street	Arterial - Class	Flow I	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Ben Hill Griffin Par	II.	45	44.9	60.7	105.6	0.51	17.4	D
I-75 NB Ramps	11	45	42.9	30.3	73.2	0.49	24.0	C
I-75 SB Ramps	11	45	12.3	15.7	28.0	0.11	14.5	<u> </u>
Total	11		100.1	106.7	206.8	1.11	19.3	D

Arterial	Flow Ru	· 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图		Travel	。 的复数数别的 建设置 电影	Arterial	Arterial
Cross Street Class S	peed 🧼 🖖	Time	Delay Ti	me (s)	(mi)	Speed	LOS
I-75 SB Ramps II	45	47.2	28.4	75.6	0.59	28.1	В
I-75 NB Ramps II	45	12.3	5.4	17.7	0.11	22.9	. C
	45	34.7	0.4	35.1	0.36	37.0	Α
Ben Hill Griffin Par II	45	13.8	27.2	41.0	0.13	11.1	F
Total		108.0	61.4	169.4	1.19	25.3	C

Arterial		Flow	Running	Signal -	Travel	Dist	Arterial	- Arterial
Cross Street Class	- S	peed	Time	Delay	Time (s) 🐬	(mi)	Speed	LOS
Ben Hill Griffin Par II		45	44,9	59.7	104.6	0.51	17.6	D
11		45	13.8	5.0	18.8	0.13	24.2	C
I-75 NB Ramps II		45	34.7	30.3	65.0	0.36	20.0	D
I-75 SB Ramps II	•	45	12.3	15.7	28.0	0.11	14.5	E
Total			105.7	110.7	216.4	1.11	18.5	D

Arterial	Flow R	unning 🖂	Signal	Travel		The second secon	rterial
Cross Street Class	Speed	Time	Delay:	Time (s)	(mi)	Speed	LOS
I-75 SB Ramps II	45	47.2	28.4	75.6	0.59	28.1	В
I-75 NB Ramps II	45	12.3	5.4	17.7	0.11	22.9	C
Miromar Outlet II	45	28.5	0.4	28.9	0.29	35.9	Α
Ben Hill Griffin Par II	45	21.7	27.2	48.9	0.20	14.7	E
Total		109.7	61.4	171,1	1.19	25.1	C

Arterial F	low.	Running	Signal	Travel	i ⊮ Dist⊣	SAN TENENT PERKET PRINCIPLE OF THE	Arterial
Cross Street Class Spi	eed	Time	Delay	Time (s)	ኔ ፡- (mi) =	Speed	LOS
Ben Hill Griffin Par II	45	44.9	59.7	104.6	0.51	17.6) D
Miromar Outlet II	45	21.7	5.5	27.2	0.20	26.4	С
I-75 NB Ramps II	45	28.5	30.3	58.8	0.29	17.6	D
I-75 SB Ramps II	45	12.3	15.7	28.0	0.11	14.5	E
Total II	<i></i>	107.4	111.2	218.6	1.11	18.3	D

Cross Street	Arterial Class	Flow R Speed	unning Time	Signal Delay	Travel Time (s)		Arterial Speed	
I-75 SB Ramps	11	45	47.2	28.4	75.6	0.59	28.1	В
I-75 NB Ramps	11	45	12.3	5.4	17.7	0.11	22.9	C
Ben Hill Griffin Par		45	42.9	27.3	70.2	0.49	25.0	С
Total	11		102.4	61.1	163.5	1.19	26.2	C

Cross Street	Arterial Class	Flow Speed	Running	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Arte Speed L	erial LOS
Ben Hill Griffin Par	11	45	44.9	59.7	104.6	0.51	17.6	· D
I-75 NB Ramps	11	45	42.9	30.3	73.2	0.49	24.0	C
I-75 SB Ramps	11	45	12.3	15.7	28.0	0.11	14.5	E
Total	11		100.1	105.7	205.8	1.11	19.4	D

INTERSECTION ANALYSIS

Edskerren @ BHG

Scenario 1: Existing Access
Timing Plan: PM Peak Hr.

	۶		*	•	4	*	4	†	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT.	■ NBR	SBL	SBT	SBR
Lane Configurations	14.14	个个	7"	ħ	个个	77	ħ	†	7	35	*	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	450		500	500		500	500		500	500		0
Storage Lanes	2		1	1		1	1		1	1		1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	3433	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
FIt Permitted	0.950			0.526			0.595			0.211		
Satd. Flow (perm)	3433	3539	1583	980	3539	1583	1108	1863	1583	393	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			293			245			54			569
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		45			45			45			45	
Link Distance (ft)		668			2693			3734			1266	
Travel Time (s)		10.1			40.8			56.6			19.2	
Volume (vph)	750	350	270	100	460	225	205	330	50	290	245	740
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	815	380	293	109	500	245	223	359	54	315	266	804
Lane Group Flow (vph)	815	380	293	109	500	245	223	359	54	315	266	804
Turn Type	Prot		Perm	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4	8		8	2		2	6		6
Detector Phases	7	4	4	3	8	8	5	2	2	1	.6	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	12.0	23.5	23.5	12.0	23.5	23.5	11.2	22.8	22.8	11.2	22.8	22.8
Total Split (s)	36.0	48.6	48.6	12.0	24.6	24.6	11.2	35.8	35.8	23.6	48.2	48.2
Total Split (%)	30.0%	40.5%	40.5%	10.0%	20.5%	20.5%	9.3%	29.8%	29.8%	19.7%	40.2%	40.2%
Maximum Green (s)	28.0	41.1	41.1	4.0	17.1	17.1	4.0	29.0	29.0	16.4	41.4	41.4
Yellow Time (s)	4.0	5.0	5.0	4.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	4.0	2.5	2.5	4.0	2.5	2.5	3.2	2.8	2.8	3.2	2.8	2.8
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	•	J		Yes	Yes		•	•		•	Ū
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode		C-Max			C-Max		None	Max	Max	None	Max	Max
Walk Time (s)		5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)		0	0		0	0		0	0		0	0
Act Effct Green (s)	31.8	44.6	44.6	28.8	20.8	20.8	39.4	32.2	32.2	55.4	44.2	44.2
Actuated g/C Ratio	0.26	0.37	0.37	0.24	0.17	0.17	0.33	0.27	0.27	0.46	0.37	0.37
v/c Ratio	0.89	0.29	0.38	0.38	0.82	0.51	0.55	0.72	0.12	0.78	0.39	0.85
Control Delay	56.0	27.3	4.4	25.6	59.7	9.5	30.8	49.3	9.5	25.5	18.8	24.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.0	27.3	4.4	25.6	59.7	9.5	30.8	49.3	9.5	25.5	18.8	24.5
LOS	Ε	C	Α	C	Е	Α	С	D	Α	С	В	С

	•	→	*	1	4	4	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		38.5	.1		40.9	Ų.		39.5			23.6	
Approach LOS		D			D			D			С	
Queue Length 50th (ft)	313	107	0	46	198	0	104	254	. 0	114	139	428
Queue Length 95th (ft)	#421	147	56	81	#277	72	160	366	32	#258	212	#646
Internal Link Dist (ft)		588			2613			3654			1186	
Turn Bay Length (ft)	450		500	500		500	500		500	500		
Base Capacity (vph)	915	1315	772	287	613	477	403	500	464	406	686	942
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	. 0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.89	0.29	0.38	0.38	0.82	0.51	0.55	0.72	0.12	0.78	0.39	0.85
Intersection Summary				的機器								

Area Type:

Other

Cycle Length: 120

Actuated Cycle Length: 120

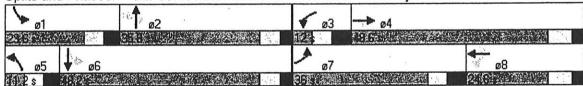
Offset: 72 (60%), Referenced to phase 4:EBT and 8:WBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89
Intersection Signal Delay: 34.4

Intersection Capacity Utilization 80.9%


Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 22: Corkscrew Road & Ben Hill Griffin Parkway

Scenario 1: Existing Access Timing Plan: PM Peak Hr.

	۶	→	*	1	4-	4	4	†	-	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ»		75	P		ሻ	^	7	34	^	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	500		500	500		500
Storage Lanes	1		0	1		0	1.		1	1		1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50	50	50	50	50
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	. 0
Turning Speed (mph)	15		9	15		9	15		9	. 15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.902			0.865				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1680	0	1770	1611	0	1770	3539	1583	1770	3539	1583
Flt Permitted	0.283			0.687			0.106	A SEASON SHOULD THE COLUMN		0.164		
Satd. Flow (perm)	527	1680	0	1280	1611	0	197	3539	1583	305	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		71			196	•			27			163
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1:00	1.00
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		407			371			1266			1175	
Travel Time (s)		9.3			8.4			19.2			17.8	
Volume (vph)	150	35	65	130	20	180	65	865	25	130	1130	150
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	163	38	71	141	22	196	71	940	27	141	1228	163
Lane Group Flow (vph)	163	109	0	141	218	. 0	71	940	27	141	1228	163
Turn Type	pm+pt			pm+pt			pm+pt		Perm	pm+pt		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phases	- 7	4		3	8		5	2	2	1	6	6
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	10.0	22.0		10.0	22.0		10.0	22.0	22.0	10.0	22.0	22.0
Total Split (s)	21.0	31.0	0.0	15.0	25.0	0.0	14.0	56.0	56.0	18.0	60.0	60.0
Total Split (%)	17.5%	25.8%	0.0%	12.5%	20.8%	0.0%	11.7%	46.7%		15.0%	50.0%	50.0%
Maximum Green (s)	15.0	25.0		9.0	19.0		8.0	50.0	50.0	12.0	54.0	54.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None		C-Max	None	C-Max	
Walk Time (s)		5.0			5.0			5.0	5.0		5.0	5.0
Flash Dont Walk (s)		11.0			11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)		. 0			0			0	0		0	0
Act Effct Green (s)	29.8	15.5		21.8	10.9		76.1	67.4	67.4	79.7	71.2	71.2
Actuated g/C Ratio	0.25	0.13		0.18	0.09		0.63	0.56	0.56	0.66	0.59	0.59
v/c Ratio	0.56	0.39		0.51	0.67		0.30	0.47	0.03	0.43	0.58	0.16
Control Delay	43.2	22.1		42.2	20.2		9.4	12.4	3.5	14.5	10.7	2.2
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.2	22.1		42.2	20.2		9.4	12.4	3.5	14.5	10.7	2.2
LOS	D	С		D	С		Α	В	Α	В	В	Α

Scenario 1: Existing Access
Timing Plan: PM Peak Hr.

	٨	-	*	1	4-	*	1	1	1	1	. 1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	. SBT.	SBR
Approach Delay		34.8			28.8			12.0			10.1	
Approach LOS		С			. С			В			В	
Queue Length 50th (ft)	105	27		89	16		. 10	137	. 1	24	120	4
Queue Length 95th (ft)	152	76		134	90		m16	m431	m2	m59	186	m18
Internal Link Dist (ft)		327			291			1186			1095	
Turn Bay Length (ft)	200			200			500		500	500		500
Base Capacity (vph)	310	433		278	444		258	1987	901	379	2101	1006
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	. 0	. 0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.53	0.25		0.51	0.49		0.28	0.47	0.03	0.37	0.58	0.16
CONTRACTOR OF THE PARTY OF THE	0924434047039.100	A PROPERTY COMES AND PROPERTY OF	STREET, SCHOOL PROPERTY	SECURDADESCOSO.	ETA CHIMENTS WHAT HE	THE PROPERTY OF THE PARTY OF	PRINCE AND	STATES SCHOOLS	diameter dependent of	PANASHARAHARAN	ALD-TEXASISTERS OF	OPERANCOUNTER

Intersection Summary

Area Type:

Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 66 (55%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.67 Intersection Signal Delay: 14.9

Intersection Capacity Utilization 68.7%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 27: Miromar Outlets North Entrance & Ben Hill Griffin Parkway

Corkscrew Road Assessment, #06508 Lanes, Volumes, Timings Scenario 2: Right-In/Right-Out Only Timing Plan: PM Peak Hr.

Editor, Volumos, III	<i>*************************************</i>	<u> </u>	_		4-	4	4	†	<i>></i>	1	T	1
	-		V SCHOOL	V	EIMDT	NADD	NBL	NBT	NBR	SBL	v ⊚SBT∈	SBR
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR						SPK
Lane Configurations	1/1/	^	7	1000	44	1000	4000	1000	1000	ነ 1000	1000	1000
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900 500	1900	1900	1900
Storage Length (ft)	450		500	500		500	500			1		0
Storage Lanes	2		1	. 1		. 1	1		1			. 1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0 50	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50	50 0	50	200000000000000000000000000000000000000	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0	U	0	0 15	,0	0
Turning Speed (mph)	15		9	15	0.05	9	15	4.00	9 1.00	1.00	1.00	9 1.00
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	1.00	1.00	0.850	1.00	1.00	0.850
Frt	0.050		0.850	0.050		0.850	0.050		0.650	0.950		0.650
Fit Protected	0.950	2520	4500	0.950	2520	1502	0.950 1770	1863	1583	1770	1863	1583
Satd. Flow (prot)	3433	3539	1583	1770	3539	1583	0.595	1003	1003	0.142	1003	1003
Fit Permitted	0.950	0500	4500	0.526	2520	4502		1863	1583	265	1863	1583
Satd. Flow (perm)	3433	3539	1583	980	3539	1583	1108	1003	Yes	200	1003	Yes
Right Turn on Red			Yes			Yes			54			658
Satd. Flow (RTOR)	4.00	4.00	293	4.00	4.00	192	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 45	1.00	1.00	45	1.00
Link Speed (mph)		45			45			3734			1266	
Link Distance (ft)		668			2693			56.6			19.2	
Travel Time (s)	4075	10.1	070	100	40.8	225	205	330	50	290	245	740
Volume (vph)	1075	350	270	100	460	225	0.92	0.92	0.92	0.92	0.92	0.92
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	223	359	54	315	266	804
Adj. Flow (vph)	1168	380	293	109	500	245	223	359	54	315	266	804
Lane Group Flow (vph)	1168	380	293	109	500	245		309			200.	Perm
Turn Type	Prot		Perm	pm+pt		Perm	pm+pt	2	Pellii	pm+pt	6	reiiii
Protected Phases	7	4		3	8		5	2	2	6	0	6
Permitted Phases	-		4	8	•	8	2 5	2	2 2	1	6	6 6
Detector Phases	7	4	4	3	8	8	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	11.2	22.8	22.8	11.2	22.8	22.8
Minimum Split (s)	12.0	23.5	23.5	12.0	23.5	23.5	11.2	28.1	28.1	22.4	39.3	39.3
Total Split (s)	45.0	57.5	57.5	12.0	24.5	24.5		23.4%		18.7%	32.8%	32.8%
Total Split (%)		47.9%		10.0%	20.4%	20.4%	9.3%		21.3	15.2	32.5	32.5
Maximum Green (s)	37.0	50.0	50.0	4.0	17.0	17.0	4.0	21.3	4.0	4.0	4.0	4.0
Yellow Time (s)	4.0	5.0	5.0	4.0	5.0	5.0	4.0	4.0 2.8	2.8	3.2	2.8	2.8
All-Red Time (s)	4.0	2.5	2.5	4.0	2.5	2.5	3.2					
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	2.0	2.0	2.0	Yes	Yes	2.0	2.0	3.0	3.0	3.0	3.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		None	Max	Max
Recall Mode	None	C-Max		None	C-Max		None	Max 5.0	Max 5.0	None	5.0	5.0
Walk Time (s)		5.0	5.0		5.0	5.0			11.0		11.0	11.0
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0 0	0		0	0
Pedestrian Calls (#/hr)	44.0	0	0	00.5	0	0	24.2			46.5	35.3	35.3
Act Effct Green (s)	41.0	53.5	53.5	28.5	20.5	20.5	31.3	24.1	24.1			0.29
Actuated g/C Ratio	0.34	0.45	0.45	0.24	0.17	0.17	0.26	0.20	0.20	0.39	0.29 0.49	0.29
v/c Ratio	1.00	0.24	0.34	0.38	0.83	0.57	0.68	0.96	0.15	0.95	22.2	23.9
Control Delay	65.0	21.2	3.4	23.8	60.7	17.3	43.3	85.4	11.5	60.1 0.0	0.0	0.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		22.2	23.9
Total Delay	65.0	21.2	3.4	23.8	60.7	17.3	43.3	85.4	11.5	60.1	22.2 C	23.9 C
LOS	Е	С	Α	С	E	В	D	F	В	E	U	

SK

	ⅉ	\rightarrow	7	1	4	*	4	†	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT:	WBR	NBL	NBT	NBR	SBL	- SBT∛	SBR
Approach Delay		46.1			43.5			64.4			31.8	:
Approach LOS		D			D			E			С	
Queue Length 50th (ft)	462	94	0	39	198	36	120	278	. 0	168	142	419
Queue Length 95th (ft)	#615	128	49	69	#278	119	185	#467	35	#359	186	#680
Internal Link Dist (ft)		588			2613			3654			1186	
Turn Bay Length (ft)	450		500	500		500	500		500	500		950
Base Capacity (vph)	1173	1578	868	285	605	430	329	374	361	333	548	930
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	. 0	. 0	. 0	0	0	. 0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.00	0.24	0.34	0.38	0.83	0.57	0.68	0.96	0.15	0.95	0.49	0.86

Intersection Summary

Area Type:

Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 71 (59%), Referenced to phase 4:EBT and 8:WBTL, Start of Green

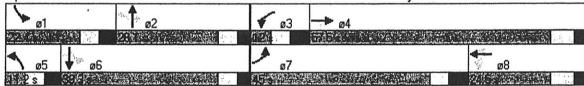
Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.00

Intersection Signal Delay: 43.9

Intersection Capacity Utilization 90.2%


Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 22: Corkscrew Road & Ben Hill Griffin Parkway

Scenario 2: Right-In/Right-Out Only Timing Plan: PM Peak Hr.

,	۶	→	*	•	4-	4	1	†	~	1	1	1
Lane Group	EBL	EBT	EBR	/WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	f)		Y	7>		7	ተተ	7	'n	ተ ተ	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	500		500	500	,	500
Storage Lanes	1		0	1		0	-1		1	1		1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50	50	50	50	50
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.902	4		0.865				0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1680	0	1770	1611	0	1770	3539	1583	1770	3539	1583
Flt Permitted	0.225			0.687			0.078			0.261		
Satd. Flow (perm)	419	1680	0	1280	1611	0	145	3539	1583	486	3539	1583
Right Turn on Red			Yes			Yes		w.	Yes			Yes
Satd. Flow (RTOR)		69			196				27			163
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		407			371			1266			1175	
Travel Time (s)		9.3			8.4			19.2			17.8	
Volume (vph)	150	35	65	130	20	180	195	865	25	130	1130	150
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	163	38	71	141	22	196	212	940	27	141	1228	163
Lane Group Flow (vph)	163	109	0	141	218	0	212	940	27	141	1228	163
Turn Type	pm+pt			pm+pt			pm+pt		Perm	pm+pt		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8			2		2	6		6
Detector Phases	7	4		3	8		5	2	2	1	6	6
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	10.0	22.0		10.0	22.0		10.0	22.0	22.0	10.0	22.0	22.0
Total Split (s)	18.0	27.0	0.0	13.0	22.0	0.0	23.0	67.0	67.0	13.0	57.0	57.0
Total Split (%)	15.0%	22.5%	0.0%	10.8%	18.3%	0.0%	19.2%	55.8%	55.8%	10.8%	47.5%	47.5%
Maximum Green (s)	12.0	21.0		7.0	16.0		17.0	61.0	61.0	7.0	51.0	51.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max	C-Max	None	C-Max	C-Max
Walk Time (s)		5.0			5.0			5.0	5.0		5.0	5.0
Flash Dont Walk (s)		11.0			11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)		0			0			0	0		0	0
Act Effct Green (s)	28.2	15.5		19.9	10.9		82.9	70.5	70.5	74.0	65.0	65.0
Actuated g/C Ratio	0.24	0.13		0.17	0.09		0.69	0.59	0.59	0.62	0.54	0.54
v/c Ratio	0.65	0.39		0.56	0.67		0.71	0.45	0.03	0.36	0.64	0.17
Control Delay	49.9	23.2		47.2	20.1		33.1	12.4	3.3	7.9	12.0	1.9
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.9	23.2		47.2	20.1		33.1		3.3	7.9	12.0	1.9
LOS	D	С		D	С		С	В	Α	Α	В	Α

	•	-	*	1	4-	*	4	†	1	1	↓	1
Lane Group	EBL	EBT	EBR \	NBL	WBT	WBR	NBL	NBT.	NBR	SBL	SBT	SBR
Approach Delay	•	39.2			30.7			15.9			10.6	
Approach LOS		D			С			В			В	
Queue Length 50th (ft)	108	28		92	16		82	203	1	20	103	2
Queue Length 95th (ft)	158	78		139	89		m72	m340	m2	m43	268	m15
Internal Link Dist (ft)	:	327			291			1186			1095	
Turn Bay Length (ft)	200			200			500		500	500		500
Base Capacity (vph)	257	378		250	408		359	2080	941	400	1916	932
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		. 0	0		0	0	. 0	0	0	. 0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.63	0.29		0.56	0.53		0.59	0.45	0.03	0.35	0.64	0.17
Intersection Summary			RYGUENIKAN									MAKE

Area Type:

Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 69 (58%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.71
Intersection Signal Delay: 16.9

Intersection Capacity Utilization 75.9%

Intersection LOS: B
ICU Level of Service D

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 27: Miromar Outlets North Entrance & Ben Hill Griffin Parkway

Corkscrew Road Assessment, #06508 Lanes, Volumes, Timings Scenario 3: Directional Signal Timing Plan: PM Peak Hr.

Lane Configurations		٨	-	*	•	4-	*	1	†	~	1	†	1
Ideal Flow (yphpl)	Lane Group	EBL	₹EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Ideal Flow (vphpl)	Lane Configurations	16.54	ተተ	74	Ĭ,	个个	7	"	^	7		↑	. 7
Storage Lanes	Ideal Flow (vphpl)			1900	1900		1900	1900	1900	1900		1900	1900
Storage Lanes	Storage Length (ft)	450		500	500		500	500		500	500		0
Leading Detector (ft)		. 2		1	1		1	1					1
Trailing Detector (ft)		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0
Trailing Detector (fit) 15	Leading Detector (ft)	50	50	50	50	50	50	50	50	50	50	50	50
Turning Speed (mph)		. 0	0	0	0	0	0	0	0	0	0	0	0
Firt	Turning Speed (mph)	15		9	15		9	15					9
Fit Protected	Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Satd. Flow (prot) 3433 3539 1583 1770 3539 1583 1770 1863 1583 1770 1863 1583 <td>Frt</td> <td></td> <td></td> <td>0.850</td> <td></td> <td></td> <td>0.850</td> <td></td> <td></td> <td>0.850</td> <td></td> <td></td> <td>0.850</td>	Frt			0.850			0.850			0.850			0.850
Satd. Flow (perm) 3433 3539 1583 980 3539 1583 1108 1108 1583 393 1863 1583 1864 1584 186	Fit Protected	0.950			0.950			0.950					
Satd. Flow (perm) 3433 3539 1583 980 3539 1583 1108 1863 1583 393 1863 1583 Right Turn on Red Satd. Flow (RTOR) 293 245 245 54 54 569 Yes Satd. Flow (RTOR) 1.00	Satd. Flow (prot)	3433	3539	1583	1770	3539	1583	1770	1863	1583		1863	1583
Right Turn on Red Satd. Flow (RTOR) Yes Yes Yes Yes Yes Yes 569 Yes 569 Yes Se69 Headway Factor 1.00	Flt Permitted	0.950		•	0.526			0.595					
Satd. Flow (RTOR) 293 245 569 54 569 Headway Factor 1.00 45 40 40 40 40 40 40 40 40 40 40 40 40	Satd. Flow (perm)	3433	3539	1583	980	3539	1583	1108	1863	1583	393	1863	1583
Headway Factor 1.00	Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph) 45 45 2693 3734 45 1266 Link Distance (ft) 668 2693 3734 1266 19.2 Travel Time (s) 10.1 40.8 56.6 19.2 19.2 Volume (vph) 750 350 270 100 460 225 205 330 50 290 245 740 Peak Hour Factor 0.92	Satd. Flow (RTOR)			293			245						569
Link Distance (ft) 668 2693 3734 1266 Travel Time (s) 10.1 40.8 56.6 19.2 Volume (vph) 750 350 270 100 460 225 205 330 50 290 245 740 Peak Hour Factor 0.92 <td< td=""><td>Headway Factor</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td></td<>	Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Distance (ft) 668 2693 3734 1266 Travel Time (s) 10.1 40.8 56.6 19.2 Volume (vph) 750 350 270 100 460 225 205 330 50 290 245 740 Peak Hour Factor 0.92 <td< td=""><td>Link Speed (mph)</td><td></td><td>45</td><td></td><td></td><td>45</td><td></td><td></td><td>45</td><td></td><td></td><td>45</td><td></td></td<>	Link Speed (mph)		45			45			45			45	
Volume (vph) 750 350 270 100 460 225 205 330 50 290 245 740 Peak Hour Factor 0.92			668			2693			3734			1266	
Volume (vph) 750 350 270 100 460 225 205 330 50 290 245 740 Peak Hour Factor 0.92	Travel Time (s)		10.1			40.8			56.6			19.2	
Peak Hour Factor 0.92		750	350	270	100	460	225	205	330	50	290	245	740
Lane Group Flow (vph) 815 380 293 109 500 245 223 359 54 315 266 804 Turn Type Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 7 4 4 8 8 2 2 2 1 6 Detector Phases 7 4 4 3 8 8 5 2 2 1 6 6 Minimum Initial (s) 4.0 <t< td=""><td></td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td></t<>		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Lane Group Flow (vph) 815 380 293 109 500 245 223 359 54 315 266 804 Turn Type Prot Perm pm+pt 4 6 6 6 6 6 6 6 6 6 4 4 0 4 4 <td>Adj. Flow (vph)</td> <td>815</td> <td>380</td> <td>293</td> <td>109</td> <td>500</td> <td>245</td> <td>223</td> <td>359</td> <td>54</td> <td>315</td> <td>266</td> <td>804</td>	Adj. Flow (vph)	815	380	293	109	500	245	223	359	54	315	266	804
Turn Type Prot Perm pm+pt pm-pt	•	815	380	293	109	500	245	223	359	54	315	266	804
Protected Phases 7 4 8 8 8 2 2 6 6 6 Permitted Phases 7 4 4 8 8 8 5 2 2 6 6 6 Detector Phases 7 4 4 4 3 8 8 5 2 2 2 1 6 6 Minimum Initial (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	Turn Type	Prot		Perm	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm
Detector Phases 7 4 4 3 8 8 5 2 2 1 6 6 Minimum Initial (s) 4.0 </td <td>Protected Phases</td> <td>7</td> <td>4</td> <td></td> <td>3</td> <td>8</td> <td></td> <td>5</td> <td>2</td> <td></td> <td>1</td> <td>6</td> <td></td>	Protected Phases	7	4		3	8		5	2		1	6	
Minimum Initial (s) 4.0 22.8 22.8 11.2 22.8 22.8 11.2 22.8 22.8 11.2 22.8 22.8 11.2 22.8 22.8 11.2 22.8 22.8 11.2 22.8 22.8 11.2 22.8 22.8 11.2 22.8 22.8 12.0 22.8 22.8 22.8 22.8 23.5 24.0 22.5 20.5 20.5% 20.5% 20.5% 29.8% 29.8% 19.7% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% <	Permitted Phases			4	8		8	2		2	6		6
Minimum Split (s) 12.0 23.5 23.5 12.0 23.5 23.5 12.0 23.5 23.5 11.2 22.8 22.8 11.2 22.8 22.8 22.8 Total Split (s) 36.0 48.6 48.6 12.0 24.6 24.6 11.2 35.8 35.8 23.6 48.2 48.2 Total Split (%) 30.0% 40.5% 40.5% 10.0% 20.5% 20.5% 9.3% 29.8% 29.8% 19.7% 40.2% 40.2% Maximum Green (s) 28.0 41.1 41.1 4.0 17.1 17.1 4.0 29.0 29.0 16.4 41.4 41.4 Yellow Time (s) 4.0 5.0 5.0 4.0 5.0 5.0 4.0	Detector Phases	7	4	4	3	8	8	5	2	2	1	6	6
Minimum Split (s) 12.0 23.5 23.5 12.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.6 22.8 23.5 23.6 48.2 49.2 49.2 49.2 49.2 49.2 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2% 40.2 41.4 41.4 41.4 41.4 41.4 41.4 41.4 41.4	Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Total Split (s) 36.0 48.6 48.6 12.0 24.6 24.6 24.6 11.2 35.8 35.8 23.6 48.2 48.2 Total Split (%) 30.0% 40.5% 40.5% 10.0% 20.5% 20.5% 29.8% 29.8% 19.7% 40.2% 40.2% Maximum Green (s) 28.0 41.1 41.1 4.0 17.1 17.1 4.0 29.0 29.0 16.4 41.4 41.4 Yellow Time (s) 4.0 5.0 5.0 4.0 5.0 5.0 4		12.0	23.5	23.5	12.0	23.5	23.5	11.2	22.8	22.8	11.2	22.8	22.8
Total Split (%) 30.0% 40.5% 40.5% 10.0% 20.5% 20.5% 20.5% 29.8% 29.8% 19.7% 40.2% 40.2% Maximum Green (s) 28.0 41.1 41.1 4.0 17.1 17.1 4.0 29.0 29.0 16.4 41.4 41.4 Yellow Time (s) 4.0 5.0 5.0 4.0 5.0 5.0 4.0 </td <td></td> <td>36.0</td> <td>48.6</td> <td>48.6</td> <td>12.0</td> <td>24.6</td> <td>24.6</td> <td>11.2</td> <td>35.8</td> <td>35.8</td> <td>23.6</td> <td>48.2</td> <td>48.2</td>		36.0	48.6	48.6	12.0	24.6	24.6	11.2	35.8	35.8	23.6	48.2	48.2
Maximum Green (s) 28.0 41.1 41.1 4.0 17.1 17.1 4.0 29.0 29.0 16.4 41.4 41.4 Yellow Time (s) 4.0 5.0 5.0 4.0 5.0 4.0		30.0%	40.5%	40.5%	10.0%	20.5%	20.5%	9.3%	29.8%	29.8%	19.7%	40.2%	40.2%
Yellow Time (s) 4.0 5.0 5.0 4.0 5.0 5.0 4.0					4.0	17.1	17.1	4.0	29.0	29.0	16.4	41.4	41.4
All-Red Time (s) 4.0 2.5 2.5 4.0 2.5 2.5 3.2 2.8 2.8 3.2 2.8 2.8 Lead/Lag Lead Lag Lead Lag Lag Lead Lag Lead Lag Lag <t< td=""><td></td><td></td><td>5.0</td><td>5.0</td><td>4.0</td><td>5.0</td><td>5.0</td><td>4.0</td><td>4.0</td><td>4.0</td><td>4.0</td><td>4.0</td><td>4.0</td></t<>			5.0	5.0	4.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/LagLeadLagLagLeadLagLagLeadLagLeadLagLagLeadLag<					4.0	2.5	2.5	3.2	2.8	2.8	3.2	2.8	2.8
Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 <					Lead			Lead	Lag	Lag	Lead	Lag	Lag
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	•			0		_			Ū			_	_
				3.0	3.0			3.0	3.0	3.0	3.0	3.0	3.0
TIGORII MODE TAUTE OFMAN OFMAN TAUTE OFMAN CHIMAN TAUTE MAN TAUTE MAN TAUTE MAN TAUTE	Recall Mode							None	Max		None	Max	Max
Walk Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0												5.0	
Flash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 11.0													
Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0													
Act Effct Green (s) 31.8 44.6 44.6 28.8 20.8 20.8 39.4 32.2 32.2 55.4 44.2 44.2		31.8			28.8			39.4	32.2	32.2	55.4	44.2	44.2
Actuated g/C Ratio 0.26 0.37 0.37 0.24 0.17 0.17 0.33 0.27 0.27 0.46 0.37 0.37													
v/c Ratio 0.89 0.29 0.38 0.38 0.82 0.51 0.55 0.72 0.12 0.78 0.39 0.85													
Control Delay 55.2 27.2 4.3 25.6 59.7 9.5 30.8 49.3 9.5 25.5 18.8 24.5													
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													
Total Delay 55.2 27.2 4.3 25.6 59.7 9.5 30.8 49.3 9.5 25.5 18.8 24.5													
LOS E C A C E A C D A C B C													

Scenario 3: Directional Signal Timing Plan: PM Peak Hr.

	♪	-	*	1	-	*	4	1	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	∜SBL∜	SBT	SBR
Approach Delay		38.0		:	40.9			39.5		****	23.6	
Approach LOS		D			D			D			С	
Queue Length 50th (ft)	313	107	0	46	198	. 0	104	254	0	114	139	428
Queue Length 95th (ft)	#421	147	56	81	#277	72	160	366	32	#258	212	#646
Internal Link Dist (ft)		588			2613			3654			1186	
Turn Bay Length (ft)	450		500	500		500	500		500	500		
Base Capacity (vph)	915	1315	772	287	613	477	403	500	464	406	686	942
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	. 0	0 .	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.89	0.29	0.38	0.38	0.82	0.51	0.55	0.72	0.12	0.78	0.39	0.85

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

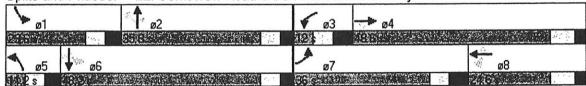
Offset: 72 (60%), Referenced to phase 4:EBT and 8:WBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89 Intersection Signal Delay: 34.2

Intersection Capacity Utilization 80.9%


Intersection LOS: C
ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 22: Corkscrew Road & Ben Hill Griffin Parkway

Scenario 3: Directional Signal Timing Plan: PM Peak Hr.

Lanes, volumes, in	۶	-	7		4	4	4	1	1	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	. P→		1	ĵ⇒		7	*	1000	1000	† †	1000
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900 500	1900	1900
Storage Length (ft)	200		0	200		0	500		500	1		500
Storage Lanes	1		0	1		0	1	4.0	. 1	4.0	4.0	4.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0 50	50	50	50
Leading Detector (ft)	50	50		50	50		50	50 0	0	0	0	0
Trailing Detector (ft)	0	0	•	0	0	0	0 15	U	. 9	15	U	. 9
Turning Speed (mph)	15	4.00	9	15	4 00	4 00	15 1.00	0.95	1.00	1.00	0.95	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.850	1.00	0.95	0.850
Frt	0.050	0.902		0.050	0.865		0.950		0.050	0.950		0.000
FIt Protected	0.950	4000	0	0.950 1770	1611	. 0	1770	3539	1583	1770	3539	1583
Satd. Flow (prot)	1770	1680	0	0.687	1011	. 0	0.106	3333	1000	0.164	0000	1000
FIt Permitted	0.283	1600	0	1280	1611	0	197	3539	1583	305	3539	1583
Satd. Flow (perm)	527	1680	0 Yes	1200	1011	Yes	137	0000	Yes	000	0000	Yes
Right Turn on Red		71	165		196	163			27			163
Satd. Flow (RTOR)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	30	1.00	1.00	30	1.00	1.00	45	1.00		45	
Link Speed (mph)		407			371			1266			1175	
Link Distance (ft)		9.3			8.4			19.2			17.8	
Travel Time (s)	150	35	65	130	20	180	65	865	25	130	1130	150
Volume (vph)	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Peak Hour Factor	163	38	71	141	22	196	71	940	27	141	1228	163
Adj. Flow (vph)	163	109	, ,	141	218	0	71	940	27	141	1228	163
Lane Group Flow (vph) Turn Type	pm+pt	103	·	pm+pt	210		pm+pt			pm+pt		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4	•		8			2		2	6		6
Detector Phases	7	4		3	8		5	2	2	1	6	6
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	10.0	22.0		10.0	22.0		10.0	22.0	22.0	10.0	22.0	22.0
Total Split (s)	21.0	31.0	0.0	15.0	25.0	0.0	14.0	56.0	56.0	18.0	60.0	60.0
Total Split (%)	17.5%		0.0%			0.0%	11.7%	46.7%	46.7%	15.0%	50.0%	50.0%
Maximum Green (s)	15.0	25.0		9.0	19.0		8.0	50.0	50.0	12.0	54.0	54.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?		J										
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Walk Time (s)		5.0			5.0			5.0	5.0		5.0	5.0
Flash Dont Walk (s)		11.0			11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)		0			0			0	0		0	0
Act Effct Green (s)	29.8	15.5		21.8	10.9		76.1	67.4	67.4		71.2	71.2
Actuated g/C Ratio	0.25	0.13		0.18	0.09		0.63		0.56		0.59	0.59
v/c Ratio	0.56	0.39		0.51	0.67		0.30		0.03		0.58	0.16
Control Delay	43.2	22.1		42.2	20.2		9.4		3.5		10.7	2.2
Queue Delay	0.0	0.0		0.0	0.0		0.0		0.0		0.0	0.0
Total Delay	43.2	22.1		42.2	20.2		9.4		3.5		10.7	2.2
LOS	D	С		D	С		Α	В	A	В	В	A

	•	→	1	-	←		4	†	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR 🖟	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		34.8			28.8			12.0	* * *		10.1	
Approach LOS		C			C			В			В	
Queue Length 50th (ft)	105	27		89	16		10	137	1	24	120	. 4
Queue Length 95th (ft)	152	76		134	90		m16	m431	m2	m59	186	m18
Internal Link Dist (ft)		327			291			1186			1095	
Turn Bay Length (ft)	200			200			500		500	500		500
Base Capacity (vph)	310	433		278	444		258	1987	901	379	2101	1006
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.53	0.25		0.51	0.49		0.28	0.47	0.03	0.37	0.58	0.16
Intersection Summary												

Area Type:

Other

Cycle Length: 120

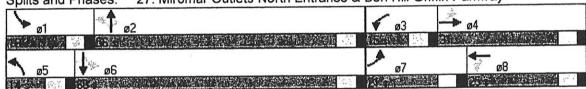
Actuated Cycle Length: 120

Offset: 66 (55%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.67 Intersection Signal Delay: 14.9


Intersection Capacity Utilization 68.7%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 27: Miromar Outlets North Entrance & Ben Hill Griffin Parkway

Corkscrew Road Assessment, #06508 Lanes, Volumes, Timings

Scenario 4: Directional Signal, Dual EBL Timing Plan: PM Peak Hr.

	١	→	*	•	4-		4	†	~	1	· 1	1
Lane Group	EBL	EBT	· EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ايراير	个个	7	'n	^	7	19	^	7	7	↑	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	450		500	500		500	500		500	500		0
Storage Lanes	2		1	_ 1		1	1		1	1		. 1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Turning Speed (mph)	15		9	15		9	15	4.00	9	15		9
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt .			0.850			0.850			0.850	0.050		0.850
Flt Protected	0.950	0500	4500	0.950	0500	4500	0.950	4000	4500	0.950	4000	4500
Satd. Flow (prot)	3433	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.950	. 0500	4500	0.526	0.500	4500	0.595	4000	4500	0.211	4000	4500
Satd. Flow (perm)	3433	3539	1583	980	3539	1583	1108	1863	1583	393	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)	4.00	4.00	293	4.00	4 00	245	4.00	4.00	54.	1.00	4.00	569
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		45			45			45 3734			45	
Link Distance (ft)		1053			2693			56.6			1266 19.2	
Travel Time (s)	750	16.0	270	100	40.8	225	205	330	50	290	245	740
Volume (vph)	750	350	270	100	460 0.92	225 0.92	0.92	0.92	0.92	0.92	0.92	0.92
Peak Hour Factor	0.92	0.92 380	0.92 293	0.92 109	500	245	223	359	54	315	266	804
Adj. Flow (vph)	815 815	380	293	109	500	245	223	359	54	315	266	804
Lane Group Flow (vph)	Prot				300			359		pm+pt	200	Perm
Turn Type Protected Phases	7	4	renn	pm+pt 3	8	reiiii	pm+pt	2	reiiii	piii pi	6	reiiii
Permitted Phases	,	4	4	8	0	8	5 2	. 4	2	6	O	6
Detector Phases	7	4	4	3	8	8	5	2	2	1	6	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	12.0	23.5	23.5	12.0	23.5	23.5	11.2	22.8	22.8	11.2	22.8	22.8
Total Split (s)	36.0	48.6	48.6	12.0	24.6	24.6	11.2	35.8	35.8	23.6	48.2	48.2
Total Split (%)		40.5%		10.0%	20.5%	20.5%	9.3%	29.8%		19.7%	40.2%	40.2%
Maximum Green (s)	28.0	41.1	41.1	4.0	17.1	17.1	4.0	29.0	29.0	16.4	41.4	41.4
Yellow Time (s)	4.0	5.0	5.0	4.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	4.0	2.5	2.5	4.0	2.5	2.5	3.2	2.8	2.8	3.2	2.8	2.8
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Lug	Lug	Loud	Yes	Yes	Loud	209	Lug	2000	Lug	Lug
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode		C-Max			C-Max		None	Max	Max	None	Max	Max
Walk Time (s)	110110	5.0	5.0	110110	5.0	5.0	110.10	5.0	5.0		5.0	5.0
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)		0	0		0	0		0	0		0	0
Act Effct Green (s)	31.8	44.6	44.6	28.8	20.8	20.8	39.3	32.1	32.1	55.4	44.2	44.2
Actuated g/C Ratio	0.26	0.37	0.37	0.24	0.17	0.17	0.33	0.27	0.27	0.46	0.37	0.37
v/c Ratio	0.89	0.29	0.38	0.38	0.82	0.51	0.55	0.72	0.12	0.78	0.39	0.85
Control Delay	55.2	27.2	4.3	25.6	59.7	9.5	30.8	49.4	9.5	25.6	19.4	24.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	55.2	27.2	4.3	25.6	59.7	9.5	30.8	49.4	9.5	25.6	19.4	24.8
LOS	E	С	Α	C	E	Α	C	D	Α	С	В	С

	٠	→	*	1	←	1	4	†	1	1	\downarrow	1
Lane Group	EBL	∉ EBT	EBR	WBL	WBT	WBR :	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		38.0			40.9			39.5		1. 18	24.0	٠. :.
Approach LOS		D			D			D			С	
Queue Length 50th (ft)	313	107	. 0	46	198	0	104	254	. 0	.120	142	425
Queue Length 95th (ft)	#421	147	56	81	#277	72	160	366	32	#258	218	#645
Internal Link Dist (ft)		973			2613			3654			1186	
Turn Bay Length (ft)	450		500	500		500	500		500	500		
Base Capacity (vph)	915	1315	772	287	613	477	403	499	463	406	686	942
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	. 0	0	0	0	0	0	0	0	0	0	.0	. 0
Storage Cap Reductn	0	0	0	0	0	. 0	0	0	0	0	0	0
Reduced v/c Ratio	0.89	0.29	0.38	0.38	0.82	0.51	0.55	0.72	0.12	0.78	0.39	0.85

Intersection Summary

Area Type:

Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 73 (61%), Referenced to phase 4:EBT and 8:WBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 34.3

Intersection LOS: C
ICU Level of Service D

Intersection Capacity Utilization 80.9%

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 22: Corkscrew Road & Ben Hill Griffin Parkway

Scenario 4: Directional Signal, Dual EBL Timing Plan: PM Peak Hr.

	٨	→	*	•	4	4	4	1	-	-		1
Lane Group	EBL.	EBT	EBR	WBL	⊪WBT∗	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	35	ß		Ť	ĵ»		ሻ	^	7	ሻ	^	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	500		500	500		500
Storage Lanes	1		0	1		0	1		1	1.	• ,	. 1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50	50	50	50	50
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	0
Turning Speed (mph)	. 15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.902			0.865				0.850			0.850
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1680	0	1770	1611	0	1770	3539	1583	1770	3539	1583
FIt Permitted	0.283			0.687			0.106			0.164		
Satd. Flow (perm)	527	1680	0	1280	1611	0	197	3539	1583	305	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		71			196		TO THE CONTROL OF THE	Was distant	27		99.5.1969.84(3)(2)(7)	163
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		407			371			1266			1175	
Travel Time (s)		9.3			8.4			19.2			17.8	
Volume (vph)	150	35	65	130	20	180	65	865	25	130	1130	150
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	163	38	71	141	22	196	71	940	27	141	1228	163
Lane Group Flow (vph)	163	109	0	141	218	0	71	940	_ 27	141	1228	_163
Turn Type	pm+pt			pm+pt	_		pm+pt	_	Perm	pm+pt	_	Perm
Protected Phases	7	4		3	8		5	2	•	1	6	•
Permitted Phases	4	-		. 8			2	_	2	6	_	6
Detector Phases	7	4		3	8		5	2	2	1	6	6
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	10.0	22.0		10.0	22.0		10.0	22.0	22.0	10.0	22.0	22.0
Total Split (s)	21.0	31.0	0.0	15.0	25.0	0.0	14.0	56.0	56.0	18.0	60.0	60.0
Total Split (%)	17.5%	25.8%	0.0%	12.5%	20.8%	0.0%	11.7%	46.7%		15.0%		50.0%
Maximum Green (s)	15.0	25.0		9.0	19.0		8.0	50.0	50.0	12.0	54.0	54.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?		-							0.0	0.0	0.0	0.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Walk Time (s)		5.0			5.0			5.0	5.0		5.0	5.0
Flash Dont Walk (s)		11.0			11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)		0		04.6	. 0		70.0	0	07.4	70.0	0	0
Act Effct Green (s)	29.8	15.5		21.8	10.9		76.0	67.4	67.4	79.8	71.3	71.3
Actuated g/C Ratio	0.25	0.13		0.18	0.09		0.63	0.56	0.56	0.66	0.59	0.59
v/c Ratio	0.56	0.39		0.51	0.67		0.30	0.47	0.03	0.43	0.58	0.16
Control Delay	43.2	22.1		42.2	20.2		9.0	11.9	3.4	14.5	10.7	2.2
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.2	22.1		42.2	20.2		9.0	11.9	3.4	14.5	10.7	2.2
LOS	D	С		D	С		Α	В	A	В	В	A

	۶	-	*	1	4-	A .	1	†	1	1	↓	4.
Lane Group	(EBL)	EBT	EBR	WBL	WBT	WBR 1	IBL.	NBT.	NBR	SBL	SBT	SBR
Approach Delay	. :	34.8			28.8			11.4			10.1	
Approach LOS		C			С			В			В	
Queue Length 50th (ft)	105	27		89	16	V	10	137	1	24	120	4
Queue Length 95th (ft)	152	76		134	90	r	n15	m431	m2	m59	186	m18
Internal Link Dist (ft)		327		*	291			1186			1095	
Turn Bay Length (ft)	200			200			500		500	500		500
Base Capacity (vph)	310	433		278	444		258	1987	901	379	2102	1006
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0 .	0	0	. 0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.53	0.25		0.51	0.49	(0.28	0.47	0.03	0.37	0.58	0.16
Intersection Summary												

Area Type:

Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 66 (55%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.67

Intersection Signal Delay: 14.8

Intersection LOS: B ICU Level of Service C

Intersection Capacity Utilization 68.7%

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Corkscrew Road Assessment, #06508 Lanes, Volumes, Timings Scenario 5: No SB RTOR at BHG Timing Plan: PM Peak Hr.

	٨	-	*	•	4	*	4	†	-	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ايراير	ተተ	7	٢	^	7	75	↑	7	ኘ	↑	7"
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	450		500	500		500	500		500	500		0
Storage Lanes	2		1	1		1	. 1		1	. 1		1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	0.97	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850	0 0 00		0.850			0.850	0.050		0.850
Fit Protected	0.950			0.950			0.950		4500	0.950		
Satd. Flow (prot)	3433	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.950			0.526			0.595	4000	4500	0.211	1000	4 = 0.0
Satd. Flow (perm)	3433	3539	1583	980	3539	1583	1108	1863	1583	393	1863	1583
Right Turn on Red			Yes			Yes			Yes			No
Satd. Flow (RTOR)			293			245			54			
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		45			45			45			45	
Link Distance (ft)		668			2693			3734			1266	
Travel Time (s)		10.1	(*)		40.8			56.6			19.2	
Volume (vph)	750	350	270	100	460	225	205	330	50	290	245	740
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	815	380	293	109	500	245	223	359	54	315	266	804
Lane Group Flow (vph)	815	380	293	109	500	245	223	359	54	315	266	804
Turn Type	Prot		Perm	pm+pt		Perm	pm+pt			pm+pt		Perm
Protected Phases	7	4		. 3	8		5	2		. 1	6	
Permitted Phases			4	8		. 8	2		2	6		6
Detector Phases	7	4	4	, 3	8	8	5	2	2	1	6	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	12.0	23.5	23.5	12.0	23.5	23.5	11.2	22.8	22.8	11.2	22.8	22.8
Total Split (s)	36.0	48.6	48.6	12.0	24.6	24.6	11.2	35.8	35.8	23.6	48.2	48.2
Total Split (%)	30.0%			10.0%	20.5%	20.5%	9.3%	29.8%		19.7%	40.2%	40.2%
Maximum Green (s)	28.0	41.1	41.1	4.0	17.1	17.1	4.0	29.0	29.0	16.4	41.4	41.4
Yellow Time (s)	4.0	5.0	5.0	4.0	5.0	5.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	4.0	2.5	2.5	4.0	2.5	2.5	3.2	2.8	2.8	3.2	2.8	2.8
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes				Yes	Yes						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	Max		None	Max	Max
Walk Time (s)		5.0	5.0		5.0	5.0		5.0			5.0	5.0
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)		0	0		0	0		0	0		0	0
Act Effct Green (s)	31.8	44.6	44.6	28.8	20.8	20.8	39.4	32.2	32.2	55.4	44.2	44.2
Actuated g/C Ratio	0.26	0.37	0.37	0.24	0.17	0.17	0.33	0.27	0.27	0.46	0.37	0.37
v/c Ratio	0.89	0.29	0.38	0.38	0.82	0.51	0.55	0.72	0.12	0.78	0.39	1.38
Control Delay	56.0	27.3	4.4	25.6	59.7	9.5	30.8	49.3	9.5	25.6	18.3	206.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.0	27.3	4.4	25.6	59.7	9.5	30.8	49.3	9.5	25.6	18.3	206.0
LOS	Е	С	Α	С	Ε	Α	С	D	Α	С	В	F

SK

	▶	\rightarrow	*	-	4	*	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		38.5			40.9			39.4			128.9	
Approach LOS		D			D			D			F	
Queue Length 50th (ft)	313	107	0	46	198	0	104	254	0	108	136	~839
Queue Length 95th (ft)	#421	147	56	81	#277	72	160	366	32	#258	210	#1081
Internal Link Dist (ft)		588			2613			3654			1186	
Turn Bay Length (ft)	450		500	500		500	500		500	500		
Base Capacity (vph)	915	1315	772	287	613	477	403	500	464	406	686	583
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	. 0	. 0	0	0	0	0	0	0	0	0	: 0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.89	0.29	0.38	0.38	0.82	0.51	0.55	0.72	0.12	0.78	0.39	1.38

Intersection Summary

Area Type:

Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 71 (59%), Referenced to phase 4:EBT and 8:WBTL, Start of Green

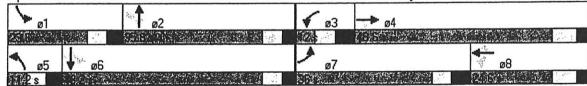
Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.38

Intersection Signal Delay: 67.8

Intersection LOS: E ICU Level of Service D


Intersection Capacity Utilization 80.9%

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
 - Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 22: Corkscrew Road & Ben Hill Griffin Parkway

Scenario 5: No SB RTOR at BHG Timing Plan: PM Peak Hr.

	٨	→	*	1	4-	4	4	1	-	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ď	f)		7	ĵ»		J.	ተተ	7	'n	†	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	200		0	200		0	500		500	500		500
Storage Lanes	1		0	1		0	1		1	1		1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50		50	50	50	. 50	50	50
Trailing Detector (ft)	0	0		0	0		0	0	0	0	0	0
Turning Speed (mph)	15		: 9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt		0.902			0.865		•		0.850			0.850
FIt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1680	0	1770	1611	0	1770	3539	1583	1770	3539	1583
FIt Permitted	0.283			0.687			0.106			0.164		
Satd. Flow (perm)	527	1680	0	1280	1611	0	197	3539	1583	305	3539	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		71			196				27			. 163
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			45			45	
Link Distance (ft)		407			371			1266			1175	
Travel Time (s)		9.3			8.4			19.2			17.8	
Volume (vph)	150	35	65	130	20	180	65	865	25	130	1130	150
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	163	38	71	141	22	196	71	940	27	141	1228	163
Lane Group Flow (vph)	163	109	0	141	218	0	71	940	_ 27	141	1228	_163
Turn Type	pm+pt			pm+pt	200		pm+pt		Perm	pm+pt	_	Perm
Protected Phases	7	4		3	8		5	2	_	. 1	6	
Permitted Phases	4		- 1	8			2		2	6	_	6
Detector Phases	. 7	4		3	8		5	2	2	1	, 6	6
Minimum Initial (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	10.0	22.0		10.0	22.0		10.0	22.0	22.0	10.0	22.0	22.0
Total Split (s)	21.0	31.0	0.0	15.0	25.0	0.0	14.0	56.0	56.0	18.0	60.0	60.0
Total Split (%)	17.5%		0.0%	12.5%	20.8%	0.0%	11.7%	46.7%		15.0%	50.0%	50.0%
Maximum Green (s)	15.0	25.0		9.0	19.0	•	8.0	50.0	50.0	12.0	54.0	54.0
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?							-					
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0		3.0	3.0	3.0	3.0
Recall Mode	None	None		None	None		None	C-Max		None	C-Max	
Walk Time (s)		5.0			5.0			5.0			5.0	5.0
Flash Dont Walk (s)		11.0			11.0			11.0	11.0		11.0	11.0
Pedestrian Calls (#/hr)		0			0			0	0		0	0
Act Effct Green (s)	29.8	15.5		21.8	10.9		76.1	67.4	67.4	79.7	71.2	71.2
Actuated g/C Ratio	0.25	0.13		0.18	0.09		0.63	0.56	0.56	0.66	0.59	0.59
v/c Ratio	0.56	0.39		0.51	0.67		0.30	0.47	0.03	0.43	0.58	0.16
Control Delay	43.2	22.1		42.2	20.2		9.9	13.0		14.5	10.7	2.2
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.2	22.1		42.2	20.2		9.9	13.0	3.7	14.5	10.7	2.2
LOS	D	С		D	С		A	В	A	В	В	A

	•	-	7	•	4	*	4	†	1	1	\	4.
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		34.8			28.8			12.6			10.2	
Approach LOS		С			С			В			В	
Queue Length 50th (ft)	105	27	120	89	16		. 11	137	1	24	120	4
Queue Length 95th (ft)	152	. 76		134	90		m17	m431	m2	m59	186	m18
Internal Link Dist (ft)		327			291			1186			1095	
Turn Bay Length (ft)	200			200			500		500	500		500
Base Capacity (vph)	310	433	•	278	444		258	1987	901	379	2100	1006
Starvation Cap Reductn	0	0		0	0		0	. 0	0	0	0	0
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.53	0.25		0.51	0.49	*.	0.28	0.47	0.03	0.37	0.58	0.16
Intersection Summary												

Area Type:

Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 66 (55%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.67 Intersection Signal Delay: 15.1

Intersection LOS: B

Intersection Capacity Utilization 68.7% Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 27: Miromar Outlets North Entrance & Ben Hill Griffin Parkway

APPENDIX 3

MIROMAR OUTLETS CORKSCREW ROAD ACCESS EVALUATION

<u>DATED SEPTEMBER 7, 2007</u>

MIROMAR OUTLETS CORKSCREW ROAD ACCESS EVALUATION

Project #07569

September 7, 2007

Prepared by:

DAVID PLUMMER & ASSOCIATES, INC.

1531 Hendry Street

Fort Myers, Florida 33901

MIROMAR OUTLETS CORKSCREW ROAD ACCESS EVALUATION

Executive Summary

This traffic study has been prepared to assess the operations of the Corkscrew Road corridor, from just west of I-75 to just east of Ben Hill Griffin Parkway, with improvements proposed by Miromar Outlets. This corridor is comprised of the I-75 ramps, Miromar Outlets directional median opening, and the intersection of Ben Hill Griffin Parkway.

The proposed improvements will relocate the existing Miromar Outlets directional median to the west, provide dual eastbound left-turn lanes, and signalize the eastbound left-turn movement. The existing entrance will be limited to inbound right-turn movement only. In addition, the proposed improvements will allow extending the eastbound dual left-turn lanes at the Corkscrew Road/Ben Hill Griffin Parkway intersection.

Based on the detailed Synchro/SimTraffic analysis the proposed improvements resulted in the following.

- Reduced total delay and delay per vehicle at the Miromar directional median opening and the Ben Hill Griffin Parkway intersections.
- Reduced total number of stops and stops per vehicle on Corkscrew Road.
- Reduced eastbound left-turn queues at the Miromar directional median opening and the Ben Hill Griffin Parkway intersections.
- Improved performance index on Corkscrew Road.
- Improved traffic flow on Corkscrew Road.

Background

The Miromar Outlets is an existing factory outlets retail center in South Lee County. The Miromar Outlets is located in the northwest quadrant of the intersection of Corkscrew Road and Ben Hill Griffin Parkway, on the north side of Corkscrew Road between I-75 and Ben Hill Griffin Parkway, Exhibit 1.

Miromar Outlets is approved for a total of 700,000 square feet of commercial space. The existing Miromar Outlets consists of approximately 570,000 square feet with approximately 90,000 square feet of proposed development (currently under review). The Miromar Outlets is anticipated to be built out by the year 2010.

Access to the Miromar Outlets includes a full median opening (Miromar North Entrance) and a directional median opening (Miromar South Entrance) onto Ben Hill Griffin Parkway and a directional median opening onto Corkscrew Road. In addition, there is an internal connection to the Germain Arena, which is to the north of Miromar Outlets.

The directional median opening onto Corkscrew Road is located approximately 1,600 feet east of the I-75 east ramps and 660 feet west of the Ben Hill Griffin Parkway intersection. Traffic operational problems have been experienced on Corkscrew Road between I-75 and Ben Hill Griffin Parkway. Improvements to the I-75 ramps on Corkscrew Road, combined with some signal timing adjustments by the Lee County DOT, have addressed some of those problems.

Miromar has been pro-actively working with the Lee County DOT to address the operational issues on Corkscrew Road from I-75 to Ben Hill Griffin Parkway. As an interim improvement, Miromar has agreed, as part of the most recent Development Order approval, to lengthen the eastbound left-turn lane at the Miromar Outlets directional median opening on Corkscrew Road by approximately 250 feet and provide two inbound lanes at the entrance.

In addition, Miromar met with the Lee County DOT to discuss a long term alternative for improving the traffic operations on Corkscrew Road, specifically from west of I-75 to east of Ben Hill Griffin Parkway. The proposed improvements would relocate the existing directional median to the west, approximately 350 feet, provide dual eastbound left-turn lanes, and signalize the eastbound left-turn movement. The existing entrance would be limited to inbound right-turn movement only.

Based on the meeting with the Lee County DOT, this traffic study has been prepared to support the proposed improvements at the Miromar Outlets directional median opening and assess the operations of Corkscrew Road with the proposed improvements.

Roadway Network

The existing roadway network in the vicinity of the Miromar Outlets is portrayed in Exhibit 1. The major roadways in the vicinity of the Miromar Outlets include I-75, Corkscrew Road and Ben Hill Griffin Parkway.

Corkscrew Road is four-lane divided roadway between US 41 and Ben Hill Griffin Parkway. It is a two-lane undivided roadway east of Ben Hill Griffin Parkway. Traffic operational problems have been experienced on Corkscrew Road, between I-75 and Ben Hill Griffin Parkway, and, in particular, at the I-75 ramps, the Miromar Outlets Entrance, and Ben Hill Griffin Parkway.

As part of this traffic study, the segment of Corkscrew Road from just west of I-75 to just east of Ben Hill Griffin Parkway is analyzed. This corridor is comprised of the I-75 ramps, Miromar Outlets directional median opening, and the intersection of Ben Hill Griffin Parkway. In addition, there is a right-in/right-out driveway on the south side of Corkscrew Road, between the I-75 east ramps and the Miromar Outlets directional median opening, into the Miromar International Design Center.

Existing Traffic Volumes

The Lee County DOT provided the Synchro network files, including the existing peak hour, peak season signal timing plans. In addition, the Lee County DOT also provided the latest intersection turning movement counts at the following intersections, Appendix A.

- I-75 SB Ramps/Corkscrew Road
- I-75 NB Ramps/Corkscrew Road
- Corkscrew Road/Ben Hill Griffin Parkway

The driveway volumes at the Miromar directional median opening were derived from the most recent Development Order (DO) traffic impact statement. The resultant turning movement volumes at the study area intersections are presented in Exhibit 2.

Existing Access

Miromar Outlets has a full median opening (Miromar North Entrance) and a directional median opening (Miromar South Entrance) onto Ben Hill Griffin Parkway and a directional median opening onto Corkscrew Road. In addition, there is an internal connection to the Germain Arena, which is to the north of Miromar Outlets.

The directional median opening onto Corkscrew Road is located approximately 1,600 feet east of the I-75 east ramps and 660 feet west of the Ben Hill Griffin Parkway intersection, Exhibit 3.

Proposed Improvements

Miromar has been pro-actively working with the Lee County DOT to address and alleviate the operational issues on Corkscrew Road from I-75 to Ben Hill Griffin Parkway. As an interim improvement, Miromar agreed, as part of the most recent Development Order approval, to lengthen the eastbound left-turn lane at the Miromar Outlets directional median opening on Corkscrew Road by approximately 250 feet and provide two inbound lanes.

In addition, Lee County DOT has implemented operational improvements at the intersection of Corkscrew Road and Ben Hill Griffin Parkway to restricted southbound right turn on red movements.

The proposed improvements now being evaluated include the following.

- Relocate the existing directional median approximately 350 feet to the west.
- Provide dual eastbound left-turn lanes.
- Signalize the eastbound dual left-turn movement.
- Convert the existing entrance to inbound right-turn movement only.

The proposed improvements are depicted on Exhibit 4.

The proposed improvements will not only address the traffic operations at the Corkscrew Road/Miromar Outlets directional median opening by providing a second eastbound left-turn lane under signal control, but will also provide additional stacking for the eastbound dual left-turn lanes at the Corkscrew Road/Ben Hill Griffin Parkway intersection. These improvements should improve traffic flow on Corkscrew Road.

Synchro/SimTraffic Analysis

An arterial analysis was performed for Corkscrew Road using Synchro 6, without and with the proposed improvements. Synchro 6 is a traffic simulation and modeling software that replicates the signalized intersection capacity analysis as specified in the 2000 Highway Capacity Manual. Also, it has the ability to assess the arterial performance with respect to the traffic signal coordination and signal timing optimization.

For each scenario, the intersection offsets were optimized using Synchro 6, in order to provide the best possible arterial flow on Corkscrew Road. Various Measures of Effectiveness (MOE) were evaluated on an arterial level as well as on a network level. The more relevant arterial and network wide MOE's included: performance index (PI); delay per vehicle; total delay hours; arterial level of service; and arterial speeds.

The various MOE's and arterial analysis results are summarized in Exhibit 5 and Exhibit 6 for without improvements and with improvements, respectively. A comparison of the MOE's is summarized below.

Comparison of Measures of Effectiveness (1)

Measure of Effectiveness	Without Improvement	With Improvement	Change
Corkscrew Road			
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Stops/Vehicle Stops Performance Index Eastbound Average Speed (MPH) Eastbound Average Speed (MPH) Westbound Arterial LOS	13 90 0.32 7910 112 29.2 C 28.8	13 91 0.28 6930 110.6 28.7 C 27.4	No Change +1.01% -12.50% -12.40% -1.25% -1.71% No Change -4.86% No Change

Network

Total Delay/Vehicle (Sce/Veh)	17	16	-5.88%
Total Delay (Hours)	167	162	-3.00%
Stops/Vehicle	0.36	0.33	-8.33%
Stops	12,992	11,911	-8.32%
Average Speed (MPH)	24	24	No Change
Travel Time (Hours)	328	322	-1.83%
Performance Index	203.1	195.5	-3.74%

Footnotes:

As shown above, the findings are as follows.

- 1. Total delay per vehicle on Corkscrew Road was 13 seconds for both scenarios, (without and with the improvements). On a network level, the improvements reduced total delay per vehicle from 17 seconds to 16 seconds.
- 2. While the total delay on Corkscrew Road increased slightly from 90 hours to 91 hours, the total delay on the network was reduced from 167 hours to 162 hours.
- 3. Stops per vehicle and total number of stops deceased approximately 12% on Corkscrew Road, as well as on the network.
- 4. The proposed improvements resulted in a better Performance Index (PI), indicating the combined effect of delay, stops and queuing, on Corkscrew Road as well as on the network level.
- 5. Based on arterial speeds, Corkscrew Road continues to operate at LOS "C" with the proposed improvements.
- 6. The proposed improvements maintain the overall network average speed and reduce the network travel time from 328 hours to 322 hours.

Synchro 6 MOE reports and arterial levels of service reports are provided as part of Appendix B.

In addition to Synchro arterial analysis, SimTraffic was used to observe the peak hour traffic simulation. The SimTraffic peak hour traffic simulation demonstrated significant operational improvements at the Miromar directional opening and the Ben Hill Griffin Parkway intersections as a result of the proposed improvements.

The various MOE's and SimTraffic analysis results are summarized in Exhibit 7 and Exhibit 8 for without improvements and with improvements, respectively. A comparison of the intersection operations without and with the proposed improvements is summarized below.

⁽¹⁾ Based on the Synchro 6 arterial level of service and measures of effectiveness reports. Please see Appendix B.

Intersection Measures of Effectiveness (1)

Measure of Effectiveness	Without Improvement	With Improvement	Change
Corkscrew Road/Miromar Directional Me	edian Opening:		
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Total Stops Average Speed (MPH) Eastbound Left 95% Queue (Feet) Eastbound Left Queuing Penalty (Veh)	38.6 37.9 1,224 15 849 23	14.4 14.0 916 24 176 ⁽²⁾ 0	-62.70% -63.06% -25.16% +60.0% -58.54%
Corkscrew Road/Ben Hill Griffin Parkwa	y: `		
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Total Stops Average Speed (MPH) Eastbound Left 95% Queue (Feet) Eastbound Left Queuing Penalty (Veh)	51.9 48.2 2535 6 593 (2) 15	46.3 42.0 2349 8 490 (2) 0	-10.79% -12.86% -7.70% +33.33% -17.30% -15

Footnotes:

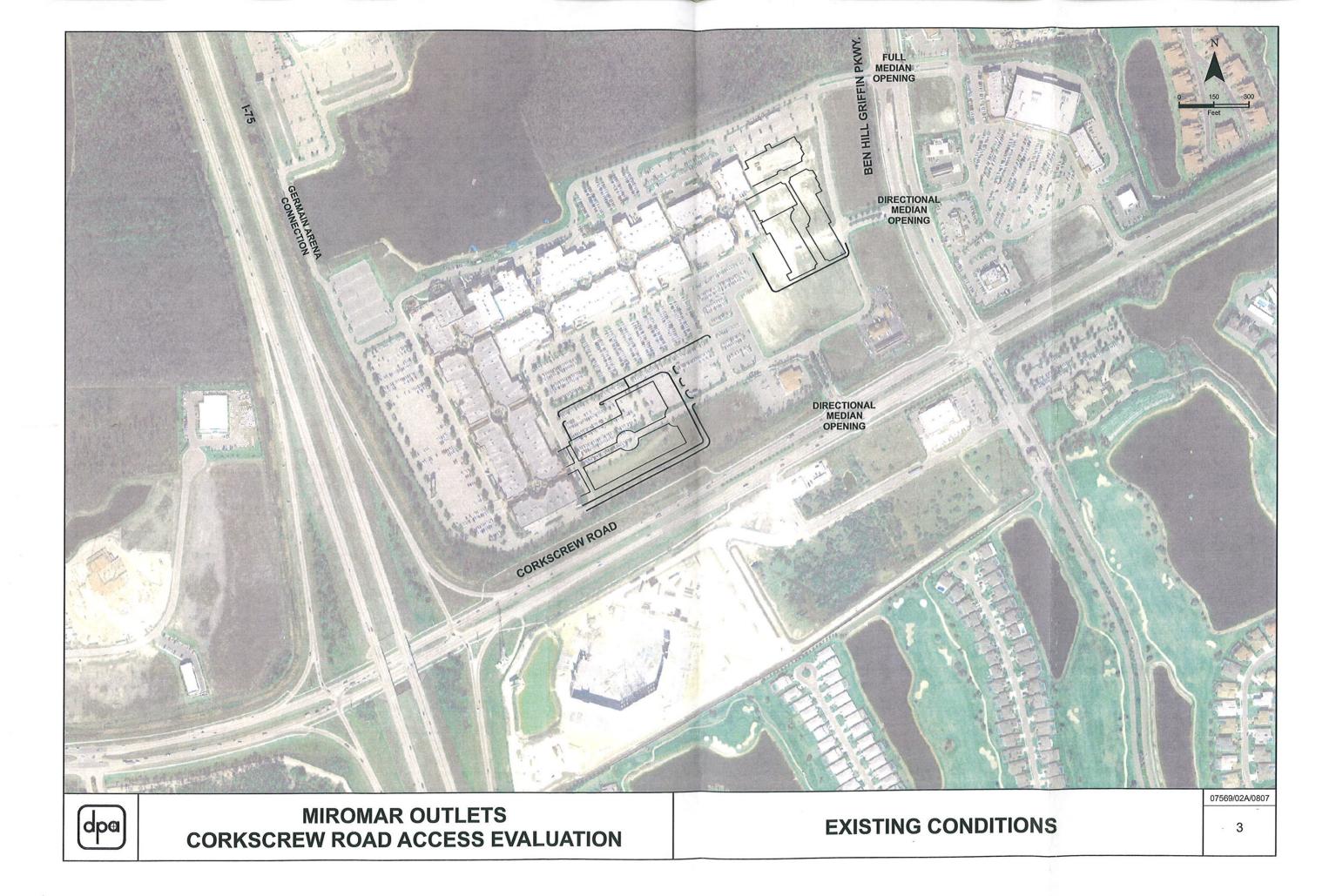
(1) Based on the SimTraffic performance reports and queuing and blocking reports.

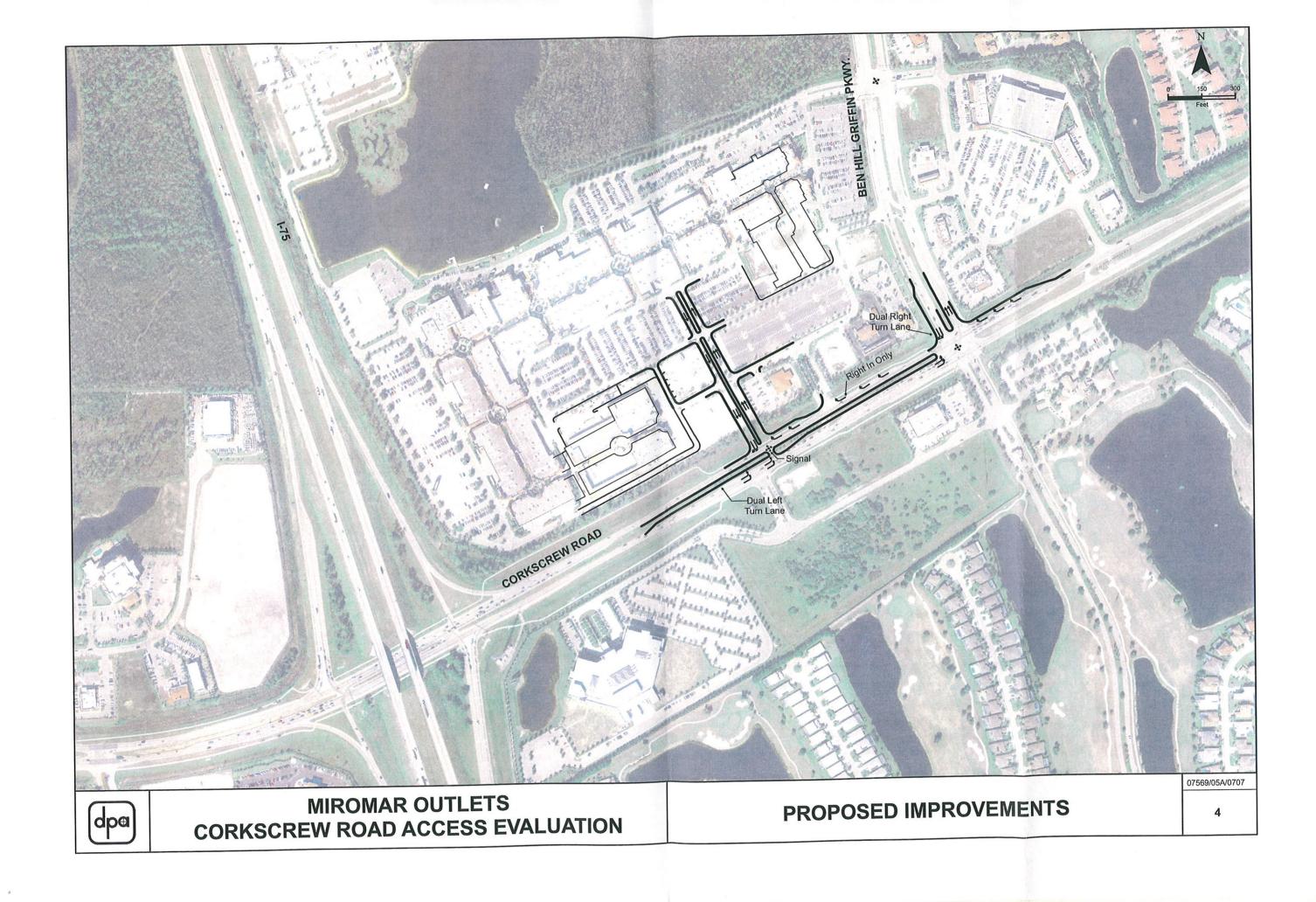
(2) Average queue length for dual left turn lanes.

As shown above, the proposed improvements demonstrated the following.

- 1. The total delay per vehicle was reduced approximately 63% at the Miromar directional median opening and approximately 11% at the Ben Hill Griffin Parkway intersection.
- 2. Total delay hours were decreased approximately 63% at the Miromar directional median opening and approximately 13% at the Ben Hill Griffin Parkway intersection.
- 3. The total number of stops was decreased approximately 25% and 8% at the Miromar directional median opening and the Ben Hill Griffin Parkway intersection, respectively.
- 4. Average speed increased by approximately 60% at the Miromar directional median opening and approximately 33% at the Ben Hill Griffin Parkway intersection.
- 5. The eastbound left-turn queues at the Miromar directional opening were reduced by approximately 59% with no queuing penalty.
- 6. The eastbound left-turn queues at the Ben Hill Griffin Parkway were reduced by approximately 17% with no queuing penalty.

SimTraffic performance reports and queuing and blocking reports are provided as part of Appendix C. Synchro network files and the corresponding SimTraffic simulation history files are provided on the attached Compact Disc (CD).


PROJECT LOCATION MAP


MIROMAR OUTLETS
CORKSCREW ROAD ACCESS EVALUATION

_

dpa

Z.H.N.		510 668 67	26 212 24 212	07569/04/0807
	Ben Hill Griffin Parkway		Stoneybrook Golf Blvd.	
		1294	1312	EXISTING PEAK HOUR TRAFFIC VOLUMES
	268	1223		PEAK
(424 Miromar Outlets (DIR)	424	1312	STING
		1647	1609	EX
			<u> </u>	
			Design Center (RI/RO)	UATION
		1647	1612	EVAL
	- 653	1364	Sqmps hnuodfinol 37—1	MIROMAR OUTLETS W ROAD ACCESS E
			1040	MAR O
		1784	1410	MIROMAR OUTLETS CORKSCREW ROAD ACCESS EVALUATION
		1220	I—75 Southbound Ramps	CORKS
	894	250	300 300 300 300 300 300 300 300 300 300	
		1540 Corkscrew	1562	

MIROMAR OUTLETS CORKSCREW ROAD ACCESS EVALUATION

SYNCHRO ANALYSIS (1) MEASURES OF EFFECTIVENESS - WITHOUT IMPROVEMENTS

Measure of Effectiveness	Without Improvement
Corkscrew Road	
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Stops/Vehicle Stops Performance Index Eastbound Average Speed (MPH) Eastbound Arterial LOS Westbound Average Speed (MPH) Westbound Arterial LOS	13 90 0.32 7910 112 29.2 C 28.8 C
Network	
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Stops/Vehicle Stops Average Speed (MPH) Travel Time (Hours) Performance Index	17 167 0.36 12,992 24 328 203.1

Footnotes:

(1) Based on Synchro 6 arterial level of service and measures of effectiveness reports. Please see Appendix B.

MIROMAR OUTLETS CORKSCREW ROAD ACCESS EVALUATION

SYNCHRO ANALYSIS (1) MEASURES OF EFFECTIVENESS - WITH IMPROVEMENTS

Measure of Effectiveness Corkscrew Road	With Improvement
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Stops/Vehicle Stops Performance Index Eastbound Average Speed (MPH) Eastbound Arterial LOS Westbound Average Speed (MPH) Westbound Arterial LOS	13 91 0.28 6930 110.6 28.7 C 27.4
Network	
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Stops/Vehicle Stops Average Speed (MPH) Travel Time (Hours) Performance Index	16 162 0.33 11,911 24 322 195.5

Footnotes:

(1) Based on Synchro 6 arterial level of service and measures of effectiveness reports. Please see Appendix B.

MIROMAR OUTLETS CORKSCREW ROAD ACCESS EVALUATION

SIMTTRAFFIC ANALYSIS (1) INTERSECTION MEASURES OF EFFECTIVENESS - WITHOUT IMPROVEMENTS

Measure of Effectiveness	Without Improvement
Corkscrew Road/Miromar Directional Median Opening	
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Total Stops Average Speed (MPH) Eastbound Left 95% Queue (Feet) Eastbound Left Queuing Penalty (Veh)	38.6 37.9 1,224 15 849 23
Corkscrew Road/Ben Hill Griffin Parkway	
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Total Stops Average Speed (MPH) Eastbound Left 95% Queue (Feet) Eastbound Left Queuing Penalty (Veh)	51.9 48.2 2535 6 593 ⁽²⁾

Footnotes:

- (1) Based on SimTraffic performance reports and queuing and blocking reports. Please see Appendix C.
- (2) Average queue length for dual left turn lanes.

MIROMAR OUTLETS CORKSCREW ROAD ACCESS EVALUATION

SIMTTRAFFIC ANALYSIS (1) INTERSECTION MEASURES OF EFFECTIVENESS - WITH IMPROVEMENTS

Measure of Effectiveness	With Improvement
Corkscrew Road/Miromar Directional Median Opening	
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Total Stops Average Speed (MPH) Eastbound Left 95% Queue (Feet) Eastbound Left Queuing Penalty (Veh)	14.4 14 916 24 176 ⁽²⁾ 0
Corkscrew Road/Ben Hill Griffin Parkway	
Total Delay/Vehicle (Sce/Veh) Total Delay (Hours) Total Stops Average Speed (MPH) Eastbound Left 95% Queue (Feet) Eastbound Left Queuing Penalty (Veh)	46.3 42 2349 8 490 ⁽²⁾ 0

Footnotes:

- (1) Based on SimTraffic performance reports and queuing and blocking reports. Please see Appendix C.
- (2) Average queue length for dual left turn lanes.

APPENDIX A INTERSECTION TURNING MOVEMENT COUNTS

CRKI75S6 LEE COUNTY DOT/TRAFFIC DIVISION TURN COUNT SUMMARY REPORT(C) - VER 1.0

SUMMARY REPORT DATE: LOCATION: CORKSCREW/ ANALYST - GREG COGGI PAGE 1 * COUNT D	
	FILE # 2 CRK54SLB FILE # 3 CRK54SR1 FILE # 4 CRK54SR2 FILE # 6 CRK54ET3 FILE # 7 CRK54ET4 FILE # 8 CRK54WBL FILE #10 CRK54WT2
1 + 2 2 + 3 3 + 4	**************************************
END HOUR 10 00 2521 11 00 2716 12 00 2719 13 00 2913 14 00 2985 15 00 3084 16 00 3538 17 00 3597 18 00 3501 19 00 2813 20 00 1730 21 00 1308 22 00 1299 23 00 722 0 00 483 1 00 215 2 00 143 3 00 483 1 00 215 2 00 143 3 00 722 6 00 73 5 00 127 6 00 73 7 00 1982 8 00 2882 9 00 2849	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
COMMENTS: 1) Makeups EBL,SL1, 2)	**************************************
* PAGE 2	**************************************

CRKI75S6

DATE: 01/25/06

START TIME - 0900

LOCATIO	N: COR	KSCREV	V/I755	SB504	********	*****	****	****	*****	****	*****
TOP THRE	E PEAK	HOURS	5; *1	L700-	3597 VP	н *1600-	3538	VPH	*1800-	3501	VPH
FIRST PE	AK HOU	R END	ING AT	r: 170	00						
TIME SBL	SBR	EBT	WBL	WBT	TOTAL						
1615 3	4 82 4 79 1 75 9 84	313 311	119 125 125 195	340 340 306 317	915 891 858 933		×				
14	8 320	1262	564	1303	3597						
PHF 0.9 % 4		0.93 35%									
SECOND F	PEAK HO	UR ENI	DING A	AT: 16	500						
1515 3 1530 4	SBR 7 88 2 72 8 71 7 88	255 332	WBL 115 114 187 121	WBT 283 364 357 305	TOTAL 851 837 995 855	(T					
16	319	1209	537	1309	3538						
PHF 0.8	35 0.91 3% 9%		0.72 15%								
THIRD PE	AK HOU	R END:	ING A	г: 180	00						
TIME SBL	. SBR	EBT	WBL	WBT	TOTAL						
1715 6 1730 4	1 88 66 67 5 65 7 71	315 304	141 156 108 109	328 356 316 300	884 960 838 819						
18	9 291	1207	514	1300	3501						
PHF 0.7 % 5		0.96 34%									
* PAGE 3				TUR	N COUNT APPROAC	SUMMARY R	REPORT DATA	(c)			***************
DATE: 0	1/25/0 N: COR	6 KSCRE\	w/I759	5B504			S	TART	TIME -	0900	****
TIME SBL		EBT	WBL	WBT	TOTAL						
915 2 930 4	5 103 9 93 6 67 8 70	241	93 92 71 73	215 237 146 163	692 676 571 582	Page 2					
						ל מחבע					

Page 2

CRKI75S6

1000 1015 1030 1045 1130 1140 11205 11245 11305 11315	51326294582108123999728744191657447042800489755426905888888888888888888888888888888888888	66987666787876976878888778887588866776219559038023801797768319017623	26109666377661298852222222222222222222222222222222222	142 744 63 108 81 77 106 112 33 106 101 101 101 101 112 102 113 104 105 114 115 116 117 117 118 118 119 119 119 119 119 119 119 119	172622196219621962196219621962196219621962	69248210177777777777777777777777777777777777
2215 2230 2245 2300 2315 2330 2345 2400 2415 2430 2445 100 115 130	9 17 15 15 14 12 6 9 10 5 8 8 8 8 0 6 3 2 0 3 0	19 17 17 26 18 13 11 9 10 11 7 6 2 3	53 57 68 31 36 32 36 21 15 21 10 12 24	40 62 85 58 35 19 30 26 20 15 30 19 7 6 5 4 4 2 3	116 129 172 144 91 59 74 59 65 58 44 39 34 24 26 19 9 16 12 21	185 169 175 138 136 111 98 61 63 59 32 38 43

145 200 215 230 245 330 345 400 415 430 515 601 715 745 801 745 801 745 801 745 801 745 801 745 801 745 801 745 801 745 801 745 801 801 801 801 801 801 801 801 801 801	2003000420027013113445744274571568	1 0 3 1 3 6 8 4 3 2 8 6 9 13 26 48 61 133 152 154 124 123 124 127 127 127 127 127 127 127 127 127 127	8 6 11 7 7 3 4 12 11 10 18 18 18 131 174 167 197 227 2173 208 210	2 5 2 3 4 1 0 3 0 1 1 6 2 5 9 32 30 50 7 7 7 83 121 116 7 116 7 117 117 117 117 117 117 11	15 32 11 7 3 4 3 7 5 7 6 4 9 17 16 49 47 76 112 221 240 231 205 224 225 227 225 227 227 227 227 227 227 227	28 43 27 21 17 14 15 22 21 25 45 39 19 58 27 27 67 67 67 67 67 67 67 67 67 67 67 67 67	CRKI75S6
800	31	132	173	70	247	653	
7	758	 52951	5156	 64761	 51984	4883	*****************

END OF DATA

CRKI75N6 LEE COUNTY DOT/TRAFFIC DIVISION TURN COUNT SUMMARY REPORT(C) - VER 1.0

```
TEXT FILE - CRKI75N6.TXT
*****************************
SUMMARY REPORT DATE: 07-06-2007 AND TIME 14:13:26 * FILE NAME CRKI75N6.TCS
LOCATION: CORKSCREW/175NB503
ANALYST - EARL R. SALLEY
        COUNT DATE :01/18/06 *
                        START TIME - 0900
PAGE 1
**********************
 TURN COUNT SUMMARY REPORT(C) IS FOR THE FOLLOWING HI-STAR(R) DATA FILES;
                           FILE # 3 CRK53NR1
                                        FILE # 4 CRK53NR2
FILE # 1 CRK53NL1
             FILE # 2 CRK53NL2
FILE # 5 CRK53EBL
             FILE # 6 CRK53ET3
                           FILE # 7 CRK53ET4
                                        FILE # 8 CRK53WBL
FILE # 9 CRK53WT1
             FILE #10 CRK53WT2
**************************
1 + 2 \mid 2 + 3 \mid 4 + 5 \mid 5 + 6 \mid 5 + 6 \mid
INTERSECTION HOURLY APPROACH TOTALS
START TIME - 0900
END HOUR
         VOLUME
10 00
          2613
              >>>>>>>>>>>>>>>
11 00
          2987
              >>>>>>>>>>>>>>>>>>>>>>>>>>>>
12 00
          3010
13 00
          3186
14 00
          3179
              15 00
          3212
              >>>>>>>>>>>>>>
16 00
          3608
              >>>>>>>>>>>>>>>
17 00
          3694
              >>>>>>>>>>>>>>>>>>>>>>>>>>>>>
          3759
18 00
              >>>>>>>>>>>>>>>>>>
19 00
          2810
              >>>>>>>>>>>>>>>>
20 00
          1832
              >>>>>>>>
21 00
          1265
              >>>>>>>
22 00
          1265
              >>>>>>>
23 00
          708
              >>>>>
0 00
          431
              >>>
1 00
2 00
3 00
          186
              >
          148
              >
          110
4 00
           68
5
 00
          123
6
 00
          498
7
 00
          1720
              >>>>>>>>
8
 00
          2648
              2708
              |>>>>>>>>>
COMMENTS:
1)
2)
*************************************
                                                   25
                 TURN COUNT SUMMARY REPORT(C)
                     PEAK HOUR ANALYSIS
```

CRKI75N6

START TIME - 0900 DATE: 01/18/06 LOCATION: CORKSCREW/175NB503 TOP THREE PEAK HOURS: *1800- 3759 VPH *1700- 3694 VPH *1600- 3608 VPH FIRST PEAK HOUR ENDING AT: 1800 TIME NBL NBR EBL EBT WBT TOTAL 314 1073 1312 3759 PHF 0.70 0.90 0.85 0.95 0.89 0.97 13% 15% 8% 29% 35% 100% SECOND PEAK HOUR ENDING AT: 1700 TIME NBL NBR EBL EBT WBT TOTAL 967 1364 3694 PHF 0.75 0.97 0.93 0.93 0.93 0.94 11% 15% 10% 26% 37% 100% THIRD PEAK HOUR ENDING AT: 1600 TIME NBL NBR EBL EBT WBT TOTAL 956 1422 3608 PHF 0.81 0.91 0.85 0.95 0.90 0.91 11% 13% 11% 26% 39% 100% ******************* * PAGE 3 TURN COUNT SUMMARY REPORT(C) APPROACH VOLUME DATA DATE: 01/18/06 START TIME - 0900 LOCATION: CORKSCREW/I75NB503 TIME NBL NBR EBL **EBT** WBT TOTAL

Page 2

CRKI75N6

1005 1015 10305 1015 1115 1115 1115 1115	496166948851886962558025581176500670670670670675462844 10555586556821176500670670670670675592110975462844	140 140 140 140 140 140 140 140 140 140	770638899656968882177399656788567866788688821773996547545434586788678678688881989997977586434921440483338776669654754543	22534477444921777444492222222222222222222222	1957 2172 2172 2172 2172 2172 2172 2172 21	686 687 777 777 777 887 781 878 878 878 878 8	
115 130	4	5	4	27 4	10 18	50 30	

630 117 69 50 94 7 645 121 89 49 154 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CRKI75N6 21
700 146 66 61 144 7	227 644
715 87 99 84 129 7	240 639
730 60 106 71 163 7	263 663
800 84 74 52 145 7	251 606
815 85 89 76 160 7	240 650
830 72 100 107 178	195 652
4816 6719 460013134164	228 800 19945768

END OF DATA

CRKBNHL6 LEE COUNTY DOT/TRAFFIC DIVISION TURN COUNT SUMMARY REPORT(C) - VER 1.0

```
TEXT FILE - CRKBNHL6.TXT
SUMMARY REPORT DATE: 07-06-2007 AND TIME 14:13:17 * FILE NAME CRKBNHL6.TCS
LOCATION: CORKSCREW ROAD/BEN HILL
ANALYST - GREG COGGINS
PAGE 1 * COUNT DAT
      COUNT DATE :01/18/06 * START TIME - 0900
************************
 TURN COUNT SUMMARY REPORT(C) IS FOR THE FOLLOWING HI-STAR(R) DATA FILES;
                                FILE # 4 CORBLSBL
FILE # 1 CORBLNBL
           FILE # 2 CORBLNBT
                     FILE # 3 CORBLNBR
                                FILE # 8 CORBLEL2
FILE # 5 CORBLSBT
           FILE # 6 CORBLSBR
                     FILE # 7 CORBLEL1
FILE # 9 CORBLET3
           FILE #10 CORBLET4
                     FILE #11 CORBLEBR
                                FILE #12 CORBLWTL
FILE #13 CORBLWT2
           FILE #14 CORBLWT1
                     FILE #15 CORBLWBR
************************
7 + 8 \mid 8 + 9 \mid 11 + 12 \mid
********************
*
            INTERSECTION HOURLY APPROACH TOTALS
START TIME - 0900
END HOUR
        VOLUME
10 00
        2326
           11 00
        2430
           12 00
        2460
           2784
13 00
           14 00
        2604
           15 00
        2619
           16 00
        2943
           17 00
        3102
           18 00
        3075
           19 00
        2393
           20 00
        1573
           >>>>>>>>>>>>>>>>>>
21 00
        1086
           >>>>>>>>>
22 00
        1111
           >>>>>>>>>>
23 00
        645
           >>>>>>>
0 00
        438
           >>>>>
        194
1 00
           >>>
2 00
        156
           >>
3 00
        121
4 00
         53
        108
 00
5
 00
        427
6
           >>>>>
 00
        1435
           >>>>>>>>>>>>>>>>>>
        2436
8 00
           2337
           COMMENTS:
1) Used Feb. '05 NBR counts
2)
*************************
ŵ
* PAGE 2
              TURN COUNT SUMMARY REPORT(C)
                 PEAK HOUR ANALYSIS
```

CRKBNHL6

	_		CR	KBNHL	6	67.40	T TTM		000
DATE: 01/18/0 LOCATION: COR	KSCREW ROA	D/BEN HI	[LL ******	***	****		MIT TI		*****
TOP THREE PEAK HOURS; *1700- 3102 VPH *1800- 3075 VPH *1600- 2943 VPH									
FIRST PEAK HOU	FIRST PEAK HOUR ENDING AT: 1700								
TIME NBL NBT	NBR SBL	SBT SE	BR EBL	EBT	EBR	WBL	WBT	WBR	TOTAL
1600 24 22 1615 46 22 1630 29 22 1645 39 26	8 24 12 20	17 1 25 1	180 179 156 180 142 201 168 196	120 67 73 75	51 59 59 52	12 13 25 17	143 143 118 106	24 18 18 31	822 753 744 783
138 92	45 96	105	546 756	335	221	67	510	91	3102
PHF 0.75 0.88 % 4% 3%		0.80 0	.90 0.94 21% 24%	0.70 11%	0.94 7%	0.67	0.89 16%	0.73 3%	0.94 100%
SECOND PEAK HO	OUR ENDING	AT: 1800	0						
TIME NBL NBT	NBR SBL	SBT SE	BR EBL	EBT	EBR	WBL	WBT	WBR	TOTAL
1700 41 20 1715 38 30 1730 43 26 1745 37 25	14 28 8 28	27 1 16 1	172 218 178 209 135 240 100 216	80 75 69 93	65 55 76 61	22 20 18 65	98 72 97 80	14 20 20 16	794 766 776 739
159 101	47 102	82	585 883	317	257	125	347	70	3075
PHF 0.92 0.84 % 5% 3%			.82 0.92 19% 29%	0.85 10%	0.85 8%		0.89 11%		0.97 100%
THIRD PEAK HOU	IR ENDING A	т: 1600							
TIME NBL NBT	NBR SBL	SBT SI	BR EBL	EBT	EBR	WBL	WBT	WBR	TOTAL
1500 38 20 1515 47 23 1530 31 20 1545 38 23	7 23 6 25	32 18	141 144 185 145 185 158 171 176		39 32 51 49	12 12	121 161 151 115	30 22 20 23	
154 86	39 100	88	682 623	301	171	56	548	95	2943
PHF 0.82 0.93 % 5% 3%			.92 0.88 23% 21%		0.84 6%				0.96 100%
* PAGE 3		TURN (COUNT SUPPROACH N	MMARY VOLUME	REPO	RT(C)			**************************************
DATE: 01/18/0	06 KKSCREW ROA	D/BEN H	ILL			STAR	T TIM	E - 0	
**************************************	NBR SBL	*****	******** BR EBL	***** EBT	EBR	***** WBL	***** WBT	***** WBR	************* TOTAL
9 48 14 915 45 27 930 34 14 945 40 18	6 24 5 15	16 16	97 163 97 149 69 116 87 184	104 59 74 62 Page 2	22 31 28 24	7	132 113 114 86	20 24 15 9	598 507

1000 1015 1030 1045 1100 1115 1200 1215 1230 1245 1230 1315 1340 1315 1340 1415 1430 1445 1430 1445 1445 1445 1445 1445 1445 1445 144
90733665553181823432123433738469918370641141121575372444 1444323436399008718469918370641141121111111111111111111111111111111
1698257277783317985050030322222260065974967211298857877445555453443474
653604112769048346581107666082514481159843223621202312000001000000000000000000000
1691222627300556147555627355544089887490221314487716171415033100010000
1021611944712011742151214592201223122312231231231231231231231231231231
995 105 11228 113149 1147 1145 1145 1145 1145 1145 1145 1145
CR 1766 9 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CB 883 836 766 667 675 688 877 97 678 778 769 482 988 222 321 122 1 97 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 6 9 4 8 4 2 9 8 8 2 2 2 3 2 1 1 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 6 9 4 8 2 9 8 8 2 2 2 2 3 2 1 1 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 6 9 4 8 2 9 8 8 2 2 2 2 3 2 1 1 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 8 7 6 9 3 9 8 2 9 8 2 2 2 3 2 1 1 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 6 9 3 9 8 2 9 8 2 2 2 2 3 2 1 1 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 6 9 3 9 8 2 9 8 2 2 2 2 3 2 1 1 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 8 7 6 9 3 9 8 2 2 2 2 3 2 1 1 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 8 7 6 9 3 9 8 2 2 2 2 3 2 1 1 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 8 7 6 9 3 9 8 2 2 2 2 3 2 1 1 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 8 7 6 9 3 9 8 2 2 2 2 3 2 1 1 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 8 7 6 9 3 9 8 2 2 2 2 3 2 1 1 2 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 8 7 6 9 3 9 8 2 2 2 2 2 3 2 1 1 2 2 2 1 9 7 2 1 4 1 9 3 1 0 1 0 3 1 6 8 8 8 7 7 9 7 6 7 8 7 8 7 6 9 3 9 8 2 2 2 2 2 3 2 1 1 2 2 2 1 9 7 2 1 4 1 1 9 3 1 0 1 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2305993334415556333334574595555555561366889177900508889772763331221180114451
82495851250744487914473112211325722085332200031021 1122111121212122122216122222221127165516341231203101021
11760 1010 1010 1010 1010 1010 1010 1010
1945117470311439475816022034881400065111721123003011111000000
61558666105520905533577772234434666557776653352332216686577778237778377766598332222233322168659497711

.

.

							CR	KBNHL	.6				
145 200 215 230 245 300 315 330 345 400 415 430 445 500 515 630 645 700 715 730 745 800 815 830 845	237 142 123 1642 1629 843 155 155 155 155 155 155 155 165 165 165	7 21 3 3 1 0 0 0 0 0 0 3 2 3 0 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000000000001014223338565410	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 8 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	220001000010101141634184792	2 5 2 1 3 1 1 1 1 2 4 2 1 5 7 18 16 33 5 1 8 7 8 8 2 8 7 10 8 1 0 4 1 0 1 8 1 9 3 7 6	CR 4 4 8 1 2 5 7 10 10 13 19 28 44 70 96 95 129 93 124 137	KBNHL 3 1 1 1 0 3 1 1 2 3 4 6 17 15 27 41 33 54 109 101 90 101 94 96 116	.6 23424102020220035223 1549116215253	0000010000110000022011316217797	4 0 2 3 0 2 3 1 0 1 0 5 5 12 18 53 49 66 97 116 112 137 137 132 102 118	00000100100327491624656163224	47 63 31 15 12 12 9 13 19 18 23 27 40 48 41 51 49 67 67 66 60 60 60 60 60 60 60 60 60 60 60 60
												40000	

우

END OF DATA

CRK3OAK6 LEE COUNTY DOT/TRAFFIC DIVISION TURN COUNT SUMMARY REPORT(C) - VER 1.0

```
TEXT FILE - CRK3OAK6.TXT
*********************************
SUMMARY REPORT DATE: 07-06-2007 AND TIME 14:13:08 * FILE NAME CRK3OAK6.TCS
LOCATION: CORKSCREW ROAD/3 OAKS
ANALYST - EARL R. SALLEY PAGE 1 * COUNT DATE
        COUNT DATE :01/11/06 * START TIME - 1100
TURN COUNT SUMMARY REPORT(C) IS FOR THE FOLLOWING HI-STAR(R) DATA FILES:
                           FILE # 3 CORK3NBR
                                        FILE # 4 CORK3SBL
FILE # 1 CORK3NBL
              FILE # 2 CORK3NBT
                                        FILE # 8 CORK3ET3
FILE # 5 CORK3SBT
                           FILE # 7 CORK3EBL
              FILE # 6 CORK3SBR
FILE # 9 CORK3ET4
                                         FILE #12 CORK3WT2
              FILE #10 CORK3EBR
                           FILE #11 CORK3WBL
FILE #13 CORK3WT1
              FILE #14 CORK3WBR
************************
12 + 13 \mid 8 + 9 \mid
*************************
               INTERSECTION HOURLY APPROACH TOTALS
START TIME - 1100
END HOUR
          VOLUME
12 00
          2937
              >>>>>>>>>>>>>>
13 00
          3203
              >>>>>>>>>>>>>>>
14 00
          3176
              15 00
          3277
              >>>>>>>>>>>
16 00
          3809
              >>>>>>>>>>>>>>>>>
17 00
          3508
              18 00
          3673
              >>>>>>>>>>>>>>>>
          2871
19 00
              20 00
          1829
              >>>>>>>>>>>
21 00
          1410
              >>>>>>>
22 00
          1200
              >>>>>>
23 00
          719
              >>>>
0 00
           463
              >>>
1 00
2 00
           246
              | >
           143
              >
3 00
           117
4 00
           93
           129
5
  00
6
 00
          605
              >>>>
  00
          2211
              >>>>>>>>>>
8
          3275
  00
              3374
9 00
              >>>>>>>>>>>>>>>>>
10 00
          3069
              >>>>>>>>>>>>>>>>>
11 00
          2977
              >>>>>>>>>>>>>>
COMMENTS:

    NO FAILURES

2)
*************************
35
* PAGE 2
                  TURN COUNT SUMMARY REPORT(C)
                     PEAK HOUR ANALYSIS
```

CRK3OAK6

DATE: LOCAT	01/ TION:	11/06 CORK	SCREW	/ ROAD)/3 OA	.KS		****			T TIM			***
TOP TH	IREE	PEAK	HOURS	s; *1	.600-	3809	VPH	*1800)- 367	3 VPH	ı *17	'00- 3	508 VP	Н
FIRST	PEAK	HOUF	R END	ING AT	: 160	00						*		
TIME N	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	TOTAL	
1500 1515 1530 1545	17 11 12 12	39 41 55 37	122 122 132 132	122 87 90 82	35 36 46 39	28 19 28 24	38 34 37 50	137 156 173 179	28	79 130 132 112	110 159 188 169	128	822 951 1053 983	
	52	172	499	381	156	99	159	645	100	453	626	467	3809	
PHF 0 %	0.76 1%	0.78 5%		0.78 10%		0.88 3%	0.80 4%	0.90 17%	0.89 3%	0.86 12%	0.83 16%	0.87 12%	0.90 100%	
SECONE) PEA	AK HOU	JR ENI	DING A	AT: 18	300								
TIME N	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	TOTAL	
1700 1715 1730 1745	6 15 8 9	57 59 76 64	146	88 77 89 85		21 14 28 19	56 38 38 36	175 157 144 142	15 16	106 99 88 93	176 148 117 128		935	
	38	256	567	339	131	82	168	618	50	386	569	469	3673	
PHF (0.63 1%	0.84 7%	0.93 15%		0.78 4%		0.75 5%	0.88 17%	0.78 1%	0.91 11%	0.81 15%	0.95 13%	0.96 100%	
THIRD	PEAH	K HOUI	R END	ING A	т: 170	00								
TIME N	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR	TOTAL	
1600 1615 1630 1645	13 16 14 5	37 47		101	41 44	28 32	41	156 141	13 14	99	146	125 87	896	
	48	211	497	350	172	107	168	593	63	395	489	415	3508	
PHF(% ²	0.75 1%		0.94 14%								0.84 14%		0.98 100%	
****** * PAGE	Ξ 3				TUR	N COU	NT SUI	MMARY VOLUM	REPO E DAT	RT(C) A				******
DATE:	: 01,	/11/00 COR	6 KSCRE	w ROAI	0/3 0/	AKS				STAR	T TIM	E - 1	100	****
TIME N		NBT	NBR			SBR				WBL	WBT		TOTAL	****
1100 1115 1130 1145	19 17 11 17	27 47 16 27	88 80 76 88	70 68 81 99	31 34 38 32	34 13 29 33	31 26 32 40	127 124 134 144 Page	14 19 24	74 79	148 115	57 69	702 699	

1215 12305 12315 12305 12315 13315 13315 13415 13515 1
21471961181427112231645658977485710321421228121020000000000000010
2233340000119099157777707964564585321231919111111111111111111111111111111
966 899 712 855 932 1112 122 233 1010 113 003 110 112 122 233 1010 113 003 110 111 111 111 111 111
92737770820887988795111655234555972443323883648822187286663965751349 111898878887951116552444332388322111186663965751349
89286871665756693144458261248598444191836597442121211341001300012
231 231 232 232 249 364 252 264 265 272 273 273 273 274 274 275 275 275 275 275 275 275 275 275 275
547814797167748470440136883382282816998879284111 111111111111111111111111111111111
X303 147 141 141 141 141 141 141 141 141 141
132071216059093863211110119618373621543131
8748859774245996883999768163332338331859514392251674625323024100311 10031119968333333333333333211192253024100311
138 144 155 121 128 127 130 130 140 159 169 169 169 176 176 176 176 176 176 176 176 176 176
86 78 105 76 105 106 107 108 108 109 108 109 109 109 109 109 109 109 109 109 109
7984888778494888889931688110188888899316881101888888993168811018888899317888888993178888899317888889931788888993178888899317888889931788888993178888993178889993178889999778839888999778839888999778889999778839888999778889999778889999778889999778889999778889999778889999778889999778899997788999997788999999

345 400 415 430 500 515 530 645 700 715 730 745 800 815 830 915 930 945 1000 1015 1030 1045	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 3 2 0 3 3 7 1 13 10 22 28 20 17 40 50 39 19 30 54 31 52 34	2 2 4 5 8 3 3 11 21 24 53 37 77 79 75 64 60 74 92 76 111 87 77 89 95 103 102	9 5 4 9 13 16 25 47 46 59 92 86 88 103 109 121 114 101 115 87 63 92 120 65	110406315815956730780781780601562344333	0 1 1 2 0 2 0 1 5 13 6 18 37 27 22 29 18 22 24 23 27 25 21 18 23 27 27 27 27 27 27 27 27 27 27 27 27 27	CR 0 1 0 1 2 3 2 4 4 2 8 10 14 31 23 18 24 19 25 24 6 37 18 18 22 39	.K30AK 7 3 6 11 49 22 40 41 79 130 143 124 123 124 124 123 124 124 125 126 147 147	16 0 1 0 0 1 0 1 2 4 3 10 6 4 11 11 64 4 19 19 6 12 18 16 12 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	0 2 2 3 2 11 20 28 27 39 64 92 97 91 179 122 118 121 81 96 82 82 83 97 82 82 82 82 82 82 82 82 82 82 82 82 82	3 2 3 6 6 12 21 45 49 74 143 171 168 103 177 156 134 138 115 120 119 121 128 121 128 121 121 122 131 131 131 131 131	0 4 1 3 5 3 2 6 5 5 6 6 7 3 2 6 7 7 6 9 9 0 5 1 6 6 6 8 4 7 6 7 8 6 6 6 6 8 4 7 6 9 8 6 6 6 6 8 8 7 6 9 8 6 6 6 6 8 8 7 6 8 6 8 8 7 6 8 6 8 6 8	22 22 21 44 42 78 100 198 229 322 500 636 753 812 744 921 798 859 824 868 823 758 843 765 690 759 806 759
--	---	--	--	---	---	--	---	---	---	---	--	---	--

725 2292 5457 5720 2385 1404 1989 8140 1007 5379 8152 566448314

END OF DATA

APPENDIX B SYNCHRO ANALYSIS SHEETS

Corkscrew Road	W	GW	
Scenario #	1	2	
Control Delay / Veh	13	13	
Queue Delay / Veh	0	0	
Total Delay / Veh	13	13	
Total Delay	91	90	
Stops / Veh	0.28	0.32	
Stops	6930	7910	
Average Speed (mph)	28	28	
Total Travel Time (hr)	203	203	
Distance Traveled (mi)	5606	5650	
Fuel Consumed (gal)	361	377	
Fuel Economy (mpg)	15.5	15.0	
CO Emissions (kg)	25.24	26.32	
NOx Emissions (kg)	4.91	5.12	
VOC Emissions (kg)	5.85	6.10	
Unserved Vehicles (#)	35	35	
Vehicles in dilemma zone (#)	287	217	
Performance Index	110.6	112.0	
Network Totals			
		0	
Scenario #	1	2	
Number of Intersections	14	14	
Most Popular Cycle (s)	150	150	
Alternative	With Imp	Without	
Timing Plan ID	PM 150 s	PM 150 s	
Data Time	5:00 pm	5:00 pm	
Control Delay / Veh	16	17	
Queue Delay / Veh	0	0	
Total Delay / Veh	16	17	
Total Delay	162	167	
Stops / Veh	0.33	0.36	
Stops	11911	12992	
Average Speed (mph)	24	24	
Total Travel Time (hr)	322	328	
Total Travel Tille (III)			
Distance Traveled (mi)	7679	7722	
Distance Traveled (mi)	7679	7722	
Distance Traveled (mi) Fuel Consumed (gal)	7679 543	7722 564	
Distance Traveled (mi) Fuel Consumed (gal) Fuel Economy (mpg)	7679 543 14.1	7722 564 13.7	
Distance Traveled (mi) Fuel Consumed (gal) Fuel Economy (mpg) CO Emissions (kg)	7679 543 14.1 37.98	7722 564 13.7 39.41	
Distance Traveled (mi) Fuel Consumed (gal) Fuel Economy (mpg) CO Emissions (kg) NOx Emissions (kg)	7679 543 14.1 37.98 7.39	7722 564 13.7 39.41 7.67	
Distance Traveled (mi) Fuel Consumed (gal) Fuel Economy (mpg) CO Emissions (kg) NOx Emissions (kg) VOC Emissions (kg)	7679 543 14.1 37.98 7.39 8.80	7722 564 13.7 39.41 7.67 9.13	

Miromar Outlets Corkscrew Road Access Evaluation Alternative Comparisons

Scenario Information

Scenario #1

Filename: E:\07569\Revised\With.sy7

Location: Miromar Outlets Corkscrew Road Access Evaluation

Data Date: 7/26/2007 Data Time: 5:00 pm

Timing Plan ID: PM 150 sec Alternative: With Improvements Number of Signalized Intersections: 8 Most Popular Cycle Length: 150

Scenario #2

Filename: E:\07569\Revised\Without.sy7

Location: Miromar Outlets Corkscrew Road Access Evaluation

Data Date: 7/26/2007 Data Time: 5:00 pm

Timing Plan ID: PM 150 sec
Alternative: Without Improvements
Number of Signalized Intersections: 7
Most Popular Cycle Length: 150

Arterial Level of Service: EB Corkscrew Road

	Arterial	Flow	Running	Signal	Travel	Dist	Arterial	Arterial
Cross Street	Class	Speed	Time	Delay	Time (s)	(mi)	Speed	LOS
River Ranch	ı	50	32.0	6.1	38.1	0.35	33.2	С
ThreeOaks Pkwy	1	50	33.4	43.9	77.3	0.39	18.1	E
175 SB On RAMP	1 -	50	50.8	35.2	86.0	0.70	29.5	С
I75NBLT	i	50	11.0	1.0	12.0	0.11	33.0	С
Stoneybrook	1	50	41.4	27.4	68.8	0.58	30.1	С
Pinewood Elem.	1	50	39.7	3.2	42.9	0.51	42.7	A
Total	1		208.3	116.8	325.1	2.64	29.2	С

Arterial Level of Service: WB Corkscrew Road

	Arterial	Flow	Running	Signal	Travel	Dist	Arterial	Arterial
Cross Street	Class	Speed	Time	Delay	Time (s)	(mi)	Speed	LOS
Pinewood Elem.	1	50	20.2	4.7	24.9	0.20	29.1	С
Ben Hill Griffin Pkw	1	50	39.7	51.1	90.8	0.51	20.2	Ε
175NBLT	1	50	41.4	33.2	74.6	0.58	27.8	С
175 SB On RAMP	1	50	11.0	0.4	11.4	0.11	34.7	В
ThreeOaks Pkwy	I	50	50.8	23.2	74.0	0.70	34.3	В
River Ranch	1	50	33.4	2.1	35.5	0.39	39.4	<u> B</u>
Total	ı		196.5	114.7	311.2	2.49	28.8	С

Arterial Level of Service: EB Corkscrew Road

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
River Ranch	ı	50	32.0	6.1	38.1	0.35	33.2	C
ThreeOaks Pkwy	1	50	33.4	43.9	77.3	0.39	18.1	E
175 SB On RAMP	1	50	50.8	34.7	85.5	0.70	29.7	С
175NBLT	1	50	11.0	1.0	12.0	0.11	33.0	С
Miromar Directional	ł	50	33.6	0.3	33.9	0.37	39.2	В
Stoneybrook	1	50	20.7	20.0	40.7	0.21	18.3	Ε
Pinewood Elem.	1	50	39.7	3.9	43.6	0.51	42.1	Α
Total	1		221.2	109.9	331.1	2.64	28.7	C

Arterial Level of Service: WB Corkscrew Road

Cross Street	Arterial Class	Flow Speed	Running Time	Signal Delay	Travel Time (s)	Dist (mi)	Arterial Speed	Arterial LOS
Pinewood Elem.	ı	50	20.2	4.7	24.9	0.20	29.1	C
Ben Hill Griffin Pkw	1	50	39.7	51.2	90.9	0.51	20.2	E
Miromar Directional	1	50	20.7	9.2	29.9	0.21	24.9	D
I75NBLT	1	50	33.6	26.2	59.8	0.37	22.2	D
175 SB On RAMP	I	50	11.0	0.4	11.4	0.11	34.7	В
ThreeOaks Pkwy	1	50	50.8	24.3	75.1	0.70	33.8	С
River Ranch	1	50	33.4	2.1	35.5	0.39	39.4	В
Total	1		209.4	118.1	327.5	2.49	27.4	С

APPENDIX C SIMTRAFFIC ANALYSIS SHEETS

14: Miramar Outlets & Ben Hill Griffin Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	0.5	0.2	0.1	1.0	0.1	0.4	0.5	1.4	0.0	1.1	4.0	0.2
Delay / Veh (s)	24.7	28.9	10.6	31.0	26.3	6.2	23.2	8.3	2.1	24.3	15.1	9.1
Total Stops	62	16	39	101	9	153	61	176	14	119	392	27
Travel Dist (mi)	2.9	0.7	1.9	4.2	0.4	7.3	7.9	66.5	3.6	23.6	137.5	10.4
Travel Time (hr)	0.7	0.2	0.3	1.3	0.1	0.8	0.8	3.8	0.2	1.8	7.2	0.5
Avg Speed (mph)	4	4	7	3	4	9	10	17	21	15	20	27
Vehicles Entered	78	20	50	121	12	209	75	625	34	161	937	71
Vehicles Exited	78	20	50	120	12	207	74	628	34	160	948	71
Hourly Exit Rate	78	20	50	120	12	207	74	628	34	160	948	71
Denied Entry Before	. 0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

14: Miramar Outlets & Ben Hill Griffin Performance by movement

Movement	All
Total Delay (hr)	9.5
Delay / Veh (s)	14.2
Total Stops	1169
Travel Dist (mi)	266.9
Travel Time (hr)	17.6
Avg Speed (mph)	16
Vehicles Entered	2393
Vehicles Exited	2402
Hourly Exit Rate	2402
Denied Entry Before	0
Denied Entry After	0

24: Corkscrew Road & Miromar Directional Performance by movement

Movement	EBL	EBT	WBT	WBR	SBR	All
Total Delay (hr)	18.3	3.0	1.5	0.1	15.2	37.9
Delay / Veh (s)	239.3	6.9	4.3	2.7	127.5	38.6
Total Stops	571	62	3	6	582	1224
Travel Dist (mi)	103.9	530.9	169.2	9.7	38.3	852.0
Travel Time (hr)	20.8	14.0	6.0	0.4	16.9	58.1
Avg Speed (mph)	5	38	28	23	3	15
Vehicles Entered	291	1559	1222	70	433	3575
Vehicles Exited	259	1537	1219	70	423	3508
Hourly Exit Rate	259	1537	1219	70	423	3508
Denied Entry Before	0	0	0	0	0	0
Denied Entry After	0	0	0	0	1	1

501: Corkscrew Road & Pinewood Elem. Performance by movement

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All	
Total Delay (hr)	0.8	0.0	0.1	1.0	0.4	0.0	2.3	
Delay / Veh (s)	6.6	3.1	13.4	6.2	30.0	4.8	7.4	
Total Stops	72	14	12	118	45	23	284	
Travel Dist (mi)	137.2	16.2	3.9	109.6	7.2	3.6	277.7	
Travel Time (hr)	3.6	0.4	0.2	3.4	0.7	0.2	8.5	
Avg Speed (mph)	38	37	25	33	11	20	33	
Vehicles Entered	422	50	20	559	53	26	1130	
Vehicles Exited	423	50	21	562	53	26	1135	
Hourly Exit Rate	423	50	21	562	53	26	1135	
Denied Entry Before	0	0	0	0	0	0	0	
Denied Entry After	0	0	0	0	0	0	0	

502: Corkscrew Road & Ben Hill Griffin Pkwy. Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	24.2	2.7	0.2	1.4	8.4	1.1	1.8	0.9	0.2	1.1	1.4	4.8
Delay / Veh (s)	111.8	29.1	4.1	64.2	56.1	42.9	47.1	35.6	15.9	40.5	15.1	28.5
Total Stops	976	184	100	69	430	77	111	64	27	76	75	346
Travel Dist (mi)	106.9	45.1	30.0	4.8	36.1	6.2	8.3	5.6	2.6	11.9	27.8	74.2
Travel Time (hr)	27.4	3.6	1.2	1.5	9.2	1.3	2.1	1.1	0.3	1.5	2.1	7.6
Avg Speed (mph)	4	13	24	3	4	5	4	5	9	8	13	10
Vehicles Entered	787	329	219	75	538	88	136	91	43	97	334	610
Vehicles Exited	774	329	216	76	544	92	137	91	42	98	334	609
Hourly Exit Rate	774	329	216	76	544	92	137	91	42	98	334	609
Denied Entry Before	0	0	0	0	0	0	0	0	0	0	0	0
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0
	Ö		_	_	_		0	0	0	0	0	O

502: Corkscrew Road & Ben Hill Griffin Pkwy. Performance by movement

Movement	All
Total Delay (hr)	48.2
Delay / Veh (s)	51.9
Total Stops	2535
Travel Dist (mi)	359.5
Travel Time (hr)	59.1
Avg Speed (mph)	6
Vehicles Entered	3347
Vehicles Exited	3342
Hourly Exit Rate	3342
Denied Entry Before	0
Denied Entry After	0

Intersection: 14: Miramar	Outlets &	Ben Hill	Griffin
---------------------------	-----------	----------	---------

Movement	EB	EB	WB	WB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	L	TR	L	TR	L	Т	Т	R.	L	T	T	R
Maximum Queue (ft)	131	67	190	86	119	120	155	30	136	261	282	51
Average Queue (ft)	43	32	70	52	42	59	70	11	73	120	124	17
95th Queue (ft)	95	63	131	81	91	111	127	33	122	212	222	41
Link Distance (ft)		188		175		511	511			770	770	
Upstream Blk Time (%)			0.00									
Queuing Penalty (veh)			0									
Storage Bay Dist (ft)	225		225		375			275	325			325
Storage Blk Time (%)			0.00									
Queuing Penalty (veh)			1									

Intersection: 24: Corkscrew Road & Miromar Directional

Movement	EB	EB	EB	WB	SB	
Directions Served	L	T	Т	R	R	
Maximum Queue (ft)	875	1469	1129	52	480	
Average Queue (ft)	512	75	38	6	421	Tr.
95th Queue (ft)	849	515	372	28	572	
Link Distance (ft)		1849	1849		465	
Upstream Blk Time (%)					0.33	
Queuing Penalty (veh)					0	
Storage Bay Dist (ft)	850			300		
Storage Blk Time (%)	0.03					
Queuing Penalty (veh)	23					a.

Intersection: 501: Corkscrew Road & Pinewood Elem.

Movement	EB	EB	WB	WB	NB	NB	
Directions Served	·T	R	L	T	L	R	
Maximum Queue (ft)	138	50	28	139	67	44	
Average Queue (ft)	53	10	8	75	33	13	
95th Queue (ft)	118	33	27	134	63	34	2
Link Distance (ft)	1674			1030		714	
Upstream Blk Time (%)							F
Queuing Penalty (veh)							
Storage Bay Dist (ft)		450	400		275		
Storage Blk Time (%)							
Queuing Penalty (veh)							

Intersection: 502: Corkscrew Ro	load & Ben Hill Griffin Pkwy.
---------------------------------	-------------------------------

Movement	EB	EB	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB
Directions Served	L	L	Т	Т	R	L	T	TR	L	TR	L	Т
Maximum Queue (ft)	551	560	733	438	85	313	314	311	192	195	181	244
Average Queue (ft)	397	440	215	79	30	75	229	229	91	68	76	75
95th Queue (ft)	577	608	623	200	59	166	297	300	164	138	139	146
Link Distance (ft)			662	662			322	322		314		589
Upstream Blk Time (%)			0.03			0.00	0.00	0.00				
Queuing Penalty (veh)			17			0	0	0				
Storage Bay Dist (ft)	525	525			300	375			225		300	
Storage Blk Time (%)	0.02	0.07				0.00	0.00					
Queuing Penalty (veh)	4	11				0	0					

Intersection: 502: Corkscrew Road & Ben Hill Griffin Pkwy.

Movement	SB	
Directions Served	R	•
Maximum Queue (ft)	475	
Average Queue (ft)	300	
95th Queue (ft)	445	
Link Distance (ft)	589	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 503: Corkscrew Road & I75NBLT

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	NB
Directions Served	L	T	T	Т	Т	Т	L	L	R	R
Maximum Queue (ft)	436	135	137	382	383	307	304	268	222	165
Average Queue (ft)	241	54	56	286	279	229	198	138	133	81
95th Queue (ft)	393	108	106	437	372	308	290	227	201	143
Link Distance (ft)	523	523	523	282	282	282	1160	1160	1160	1160
Upstream Blk Time (%)				0.09	0.06	0.00				
Queuing Penalty (veh)				41	27	2				
Storage Bay Dist (ft)										
Storage Blk Time (%)										
Queuing Penalty (veh)										

14: Miramar Outlets & Ben Hill Griffin Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay (hr)	0.5	0.1	0.2	0.9	0.1	0.3	0.5	1.3	0.0	1.6	5.0	0.2
Delay / Veh (s)	25.2	21.6	12.2	27.4	20.4	5.2	25.4	8.5	3.0	31.5	17.8	8.4
Total Stops	52	11	53	106	9	150	67	153	18	151	500	39
Travel Dist (mi)	2.4	0.6	2.5	4.2	0.5	7.4	8.0	57.6	3.5	25.7	145.9	11.1
Travel Time (hr)	0.6	0.1	0.4	1.2	0.1	0.8	0.9	3.4	0.2	2.3	8.4	0.5
Avg Speed (mph)	4	5	7	4	5	10	9	17	20	13	18	27
Vehicles Entered	65	17	66	123	13	209	75	542	33	176	998	75
Vehicles Exited	66	17	67	124	13	210	75	541	33	177	1002	77
Hourly Exit Rate	66	17	67	124	13	210	75	541	33	177	1002	77
Denied Entry Before	0	0	0	0	0	0	0	0	0	1	2	1
Denied Entry After	0	0	0	0	0	0	0	0	0	2	0	1

14: Miramar Outlets & Ben Hill Griffin Performance by movement

Movement	All
Total Delay (hr)	10.6
Delay / Veh (s)	16.0
Total Stops	1309
Travel Dist (mi)	269.4
Travel Time (hr)	18.8
Avg Speed (mph)	15
Vehicles Entered	2392
Vehicles Exited	2402
Hourly Exit Rate	2402
Denied Entry Before	4
Denied Entry After	3

24: Corkscrew Road & Miromar Directional Performance by movement

Movement	EBL	EBT	WBT	WBR	SBR	All	
Total Delay (hr)	4.5	1.4	4.7	0.1	3.3	14.0	
Delay / Veh (s)	51.2	3.5	13.4	6.3	28.8	14.4	
Total Stops	250	0	307	15	344	916	
Travel Dist (mi)	95.2	410.4	252.8	13.9	37.7	810.0	
Travel Time (hr)	6.9	9.9	11.1	0.6	5.1	33.6	
Avg Speed (mph)	14	41	23	24	7	24	
Vehicles Entered	317	1466	1256	69	419	3527	
Vehicles Exited	315	1458	1250	69	415	3507	
Hourly Exit Rate	315	1458	1250	69	415	3507	
Denied Entry Before	0	0	0	0	0	0	
Denied Entry After	0	0	0	0	0	0	

501: Corkscrew Road & Pinewood Elem. Performance by movement

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All	
Total Delay (hr)	1.2	0.1	0.1	1.0	0.4	0.0	2.7	
Delay / Veh (s)	10.0	3.3	15.0	6.7	31.8	3.0	9.0	
Total Stops	131	24	17	120	39	18	349	
Travel Dist (mi)	135.1	19.6	5.1	102.1	6.4	3.3	271.6	* ",
Travel Time (hr)	3.9	0.5	0.2	3.2	0.7	0.2	8.8	
Avg Speed (mph)	34	37	24	32	11	22	32	
Vehicles Entered	414	59	26	522	47	25	1093	
Vehicles Exited	417	60	28	524	48	24	1101	
Hourly Exit Rate	417	60	28	524	48	24	1101	
Denied Entry Before	0	0	0	0	0	0	0	
Denied Entry After	0	0	0	0	0	0	0	

502: Corkscrew Road & Ben Hill Griffin Pkwy. Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	17.1	2.4	0.3	1.8	7.4	0.8	1.7	0.9	0.1	1.1	1.3	7.1
Total Delay (hr)		26.1	4.6	79.2	53.3	41.5	46.8	34.8	11.3	41.0	14.4	37.2
Delay / Veh (s)	88.3				397	61	107	55	33	73	73	470
Total Stops	723	190	93	74								
Travel Dist (mi)	141.9	67.6	40.8	5.4	33.6	4.6	8.0	5.3	2.9	11.8	27.1	83.6
Travel Time (hr)	20.9	3.8	1.4	2.0	8.1	1.0	2.1	1.1	0.3	1.5	2.1	10.2
	20.5			10-11-11-11-11-11	4	5	4	5	11	8	13	8
Avg Speed (mph)	/	18	28	3	(**)			_		_		
Vehicles Entered	712	334	201	80	498	69	131	87	48	97	330	688
Vehicles Exited	679	332	200	81	500	70	134	89	47	98	330	688
		332	200	81	500	70	134	89	47	98	330	688
Hourly Exit Rate	679	332									0	0
Denied Entry Before	0	0	0	0	0	0	0.	0	0	0	_	_
Denied Entry After	0	0	0	0	0	0	0	0	0	0	0	0

502: Corkscrew Road & Ben Hill Griffin Pkwy. Performance by movement

All
42.0
46.3
2349
432.6
54.4
8
3275
3248
3248
0
0

Intersection:	14:	Miramar	Outlets	&	Ben	Hill	Griffin
---------------	-----	---------	---------	---	-----	------	---------

Movement	EB	EB	WB	WB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	L	TR	L	TR	L	Т	T	R	L	Т	T	R
Maximum Queue (ft)	133	111	190	107	109	135	160	31	214	263	264	31
Average Queue (ft)	39	32	63	51	54	51	67	14	86	145	134	21
95th Queue (ft)	88	73	125	94	101	102	116	38	167	236	228	40
Link Distance (ft)		188		175		511	511			770	770	
Upstream Blk Time (%)			0.00									
Queuing Penalty (veh)			0									
Storage Bay Dist (ft)	225		225		375			275	325			325
Storage Blk Time (%)			0.00									
Queuing Penalty (veh)			1									

Intersection: 24: Corkscrew Road & Miromar Directional

Movement	EB	EB	WB	WB	WB	SB		
Directions Served	L	L	T	T	R	R		
Maximum Queue (ft)	202	197	239	224	74	345		
Average Queue (ft)	107	126	140	133	15	176		
95th Queue (ft)	168	184	239	219	48	264		
Link Distance (ft)			1000	1000		466		
Upstream Blk Time (%)								
Queuing Penalty (veh)								
Storage Bay Dist (ft)	425	425			300			
Storage Blk Time (%)								
Queuing Penalty (veh)								

Intersection: 501: Corkscrew Road & Pinewood Elem.

Movement	EB	EB	WB	WB	NB	NB	
Directions Served	Т	R	L	T	L	R	
Maximum Queue (ft)	331	52	54	179	86	42	
Average Queue (ft)	95	15	17	87	28	12	
95th Queue (ft)	220	40	42	148	61	32	
Link Distance (ft)	1674			1030		714	
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)		450	400		275		
Storage Blk Time (%)							
Queuing Penalty (veh)							

Intersection: 502:	Corkscrew	Road &	Ben	Hill	Griffin	Pkwy.

Movement	EB	EB	EB	EB	EB	WB	WB	WB	B8	NB	NB	SB
Directions Served	L	L	Т	Т	R	L	T	TR	Т	L	TR	L
Maximum Queue (ft)	643	649	191	148	65	313	390	385	32	153	236	138
Average Queue (ft)	284	355	73	71	30	84	211	220	1	89	66	65
95th Queue (ft)	450	530	146	135	56	178	302	312	10	155	158	111
Link Distance (ft)			1000	1000			322	322	496		314	
Upstream Blk Time (%)						0.00	0.01	0.01				
Queuing Penalty (veh)						0	4	4				
Storage Bay Dist (ft)	725	725			300	375				225		300
Storage Blk Time (%)	, 20	,				0.00	0.01				0.00	
Queuing Penalty (veh)						0	1				0	

Intersection: 502: Corkscrew Road & Ben Hill Griffin Pkwy.

Movement	SB	SB			
Directions Served	Τ	R		•	
Maximum Queue (ft)	627	636			
Average Queue (ft)	116	394	*		
95th Queue (ft)	368	569			
Link Distance (ft)	589	589			
Upstream Blk Time (%)	0.00	0.01			
Queuing Penalty (veh)	2	3			
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 503: Corkscrew Road & I75NBLT

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	NB	
Directions Served	L	T	T	T	Т	Т	L	L	R	R	
Maximum Queue (ft)	483	112	95	383	390	383	454	270	182	160	
Average Queue (ft)	260	61	42	310	282	253	207	145	129	91	
95th Queue (ft)	406	101	88	450	372	353	325	227	173	155	
Link Distance (ft)	523	523	523	276	276	276	1159	1159	1159	1159	
Upstream Blk Time (%)				0.13	0.11	0.03					
Queuing Penalty (veh)				59	49	16					
Storage Bay Dist (ft)											
Storage Blk Time (%)											
Queuing Penalty (veh)											

APPENDIX 4

MIROMAR OUTLETS SIGNAL WARRANT STUDY DATED JANUARY 31, 2008

DAVID PLUMMER & ASSOCIATES, INC.

TRANSPORTATION • CIVIL • STRUCTURAL • ENVIRONMENTAL

Memorandum

To:

Earl Salley

From:

Suresh Karre SQ

Date:

January 31, 2008

RE:

Miromar Outlets Signal Warrant Study, #07569

cc:

Jerry Schmoyer, Mark Gillis, David Plummer, Fort Myers Filing

Overview

Based on our January 17th meeting regarding the proposed Corkscrew Road access improvements, we have prepared a signal warrant analysis for the Corkscrew Road/Miromar Outlets Entrance intersection (hereafter referred to as the subject intersection).

Study Methodology

Of the warrants identified in the MUTCD, four warrants were determined to be applicable to the subject location. The applicable warrants include the following.

- Warrant 1A. Minimum Vehicular Volume
- Warrant 1B. Interruption of Continuous Flow
- Warrant 2.
- Four Hour Volume
- Warrant 3.
- Peak Hour Volumes

The above warrants were evaluated at the subject intersection based on the following procedures and conditions.

- 1. For the purpose of this analysis, the eastbound left-turn movement from Corkscrew Road into the Miromar Outlets was considered as the minor street approach. This is because there is no outbound left-turn movement from the Miromar Outlets onto Corkscrew Road at this intersection.
- 2. The only conflicting movement at the intersection for the eastbound left-turn is the westbound through movement on Corkscrew Road. Therefore, for the purpose of this analysis, the westbound through movement is considered as the major street approach.

- 3. Peak hour volumes at the subject intersection were derived from the traffic study titled <u>Miromar Outlets Corkscrew Road Access Evaluation</u> dated September 7, 2007. The existing traffic volumes used in that study (and shown in Appendix A) were provided by Lee County.
- 4. The existing peak hour volumes were expanded to other analysis period hours based on the shopping center hourly variation factors documented in the Institute of Transportation Engineers (ITE) <u>Trip Generation</u>, Seventh Edition (Shopping Centers, Land Use Code 820, Appendix B) and the hourly variation data for Corkscrew Road from Permanent Count Station (PCS) # 25 as documented in the 2006 <u>Lee County Traffic Count Report</u>, Appendix C.

The eastbound left-turn (minor street approach) volumes at the Corkscrew Road/Miromar Outlets Entrance are presented in Exhibit 1. The westbound through (major street approach) volumes on Corkscrew Road are presented in Exhibit 2.

The posted speed limit on Corkscrew Road is 45 mph. Based on this speed, Corkscrew Road meets the threshold of a major street speed exceeding 40 mph. Therefore, the 70% values listed in the MUTCD were applicable for this analysis.

Warrant Results

The four applicable traffic volume warrants were reviewed based on the eastbound left-turn volumes and the westbound through volumes on Corkscrew Road, Exhibit 3. The warrant results are summarized as follows. The signal warrant analyses are presented in Exhibits 4 to 6.

Signal Warrant Analyses

Signal Warrant	Warrant Status
1A. Minimum Vehicular Volume	Met
1B. Interruption of Continuous Traffic	Met
2. Four Hour Volume	Met
3. Peak Hour Volumes	Met

Conclusions

Based on the above analysis, it is concluded that the intersection of Corkscrew Road/Miromar Outlets Entrance satisfies Signal Warrants 1A, 1B, 2 and 3 as set forth in the MUTCD.

07569:Signal Warrant Memo_013008

EXHIBIT 1 MIROMAR OUTLETS SIGNAL WARRANT STUDY

MINOR STREET APPROACH VOLUMES EXPANDED BASED ON ITE HOURLY DISTRIBUTION

		(1)	(2)	Eastbound Left Turn Traffic Volumes
Г	To	ITE Distribution	(2) % of Peak Hour	From Corkscrew Road
<u>From</u>	<u>To</u>	<u>Enter</u>	70 OI FEAR HOUL	FIGHT COINSCIEW ROad
11:00 AM	12:00 PM	8.6	104%	308
12:00 PM	1:00 PM	9.5	114%	340
1:00 PM	2:00 PM	8.7	105%	311
2:00 PM	3:00 PM	7.9	95%	283
3:00 PM	4:00 PM	7.7	93%	276
4:00 PM	5:00 PM	8.2	99%	293
5:00 PM	6:00 PM	8.3	100%	297
6:00 PM	7:00 PM	7.8	94%	279
7:00 PM	8:00 PM	8.4	101%	301
8:00 PM	9:00 PM	4.7	57%	168
9:00 PM	10:00 PM	1.8	22%	64

Footnotes:

⁽¹⁾ Hourly variation factors for shopping centers (ITE LUC 820), ITE Trip Generation, Seventh Edition, page 1449.

⁽²⁾ Hourly variation as percentage of peak hour based on inbound traffic volumes.

EXHIBIT 2 MIROMAR OUTLETS SIGNAL WARRANT STUDY

MAJOR STREET APPROACH VOLUMES EXPANDED BASED ON COUNT STATION HOURLY DISTRIBUTION

	(1)		Westbound Through
	Count Station	(2)	Traffic Volumes
To	Distribution	% of Peak Hour	on Corkscrew Road
-			
12:00 PM	6.1	86%	1051
1:00 PM	6.5	92%	1120
2:00 PM	6.7	94%	1154
3:00 PM	6.9	97%	1189
4:00 PM	7.0	99%	1206
5:00 PM	7.1	100%	1223
6:00 PM	7.1	100%	1223
7:00 PM	7.0	99%	1206
8:00 PM	5.9	83%	1016
9:00 PM	4.2	59%	723
10:00 PM	3.1	44%	534
	12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM 9:00 PM	To Count Station Distribution 12:00 PM 6.1 1:00 PM 6.5 2:00 PM 6.7 3:00 PM 6.9 4:00 PM 7.0 5:00 PM 7.1 6:00 PM 7.1 7:00 PM 7.0 8:00 PM 5.9 9:00 PM 4.2	To Distribution % of Peak Hour 12:00 PM 6.1 86% 1:00 PM 6.5 92% 2:00 PM 6.7 94% 3:00 PM 6.9 97% 4:00 PM 7.0 99% 5:00 PM 7.1 100% 6:00 PM 7.1 100% 7:00 PM 7.0 99% 8:00 PM 5.9 83% 9:00 PM 4.2 59%

Footnotes:

⁽¹⁾ Hourly variation for PCS #25 from the Lee County Traffic Count Report 2006, January 2007.

⁽²⁾ Hourly variation as percentage of peak hour based on daily traffic volumes.

MIROMAR OUTLETS SIGNAL WARRANT STUDY

SUMMARY OF APPROACH VOLUMES

		(1)	(2)
From	To	Minor Street Volumes	Major Street Volumes
11:00 AM	12:00 PM	308	1051
12:00 PM	1:00 PM	340	1120
1:00 PM	2:00 PM	311	1154
2:00 PM	3:00 PM	283	1189
3:00 PM	4:00 PM	276	1206
4:00 PM	5:00 PM	293	1223
5:00 PM	6:00 PM	297	1223
6:00 PM	7:00 PM	279	1206
7:00 PM	8:00 PM	301	1016
8:00 PM	9:00 PM	168	723
9:00 PM	10:00 PM	64	534

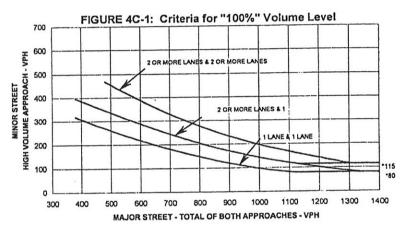
Footnotes:

⁽¹⁾ Estimated eastbound left-turn volumes at Corkscrew Road/Miromar Outlets intersection, Exhibit 1.

⁽²⁾ Estimated estimated westbound through volumes at Corkscrew Road/Miromar Outlets intersection, Exhibit 2.

TRAFFIC SIGNAL WARRANT SUMMARY

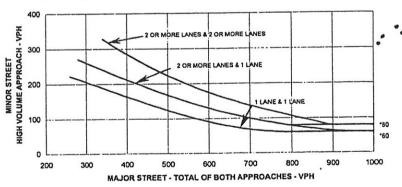
County: Lee	City: County:Lee								d Plumn ary 22,	mmer & Associates 2, 2008				
Major Street: Wes Minor Street: Miror	tbound omar Out	Corkscre let Inbou	ew Road und Left T	Turns		Lanes: Lanes:		Critic	al Appro	oach Sp	eed: 45	mph		
/olume Level Criteria 1. Is the critical speed of major street traffic > 70 km/h (40 mph)? 2. Is the intersection in a built-up area of isolated community of <10,000 population? If Question 1 or 2 above is answered "yes", then use "70%" volume level)		
WARRANT 1 - EIGHT-HOUR VEHICULAR VOLUME Warrant 1 is satisfied if Condition A or Condition B is "100%" satisfied. Warrant is also satisfied if both Condition A and Condition B are "80%" satisfied. Condition A - Minimum Vehicular Volume Applicable: Satisfied: Yes □ No 100% Satisfied: Yes □ No 80% Satisfied: Yes □ No														
	Ī						Ei	ight High	nest Hou	rs				
(volumes in veh/hr)			equirement in Bracke		11 AM-	12-1	1-2	ght High 2-3	nest Hou	rs 4-5	5-6	7-8		
(volumes in veh/hr) Approach Lanes	(80%			ets)	AM- 12	12-1			Γ		5-6	7-8		
	(80%	6 Shown	in Bracke	ets)	AM-	12-1			Γ		5-6	7-8		
Approach Lanes	(80%	6 Shown 1	in Bracke	ore	AM- 12	12-1			Γ		5-6	7-8		
Approach Lanes Volume Level Both Approaches	100%	% Shown	2 or m 100% 600	rore	AM- 12 PM		1-2	2-3	3-4	4-5				


			quireme	Eight Highest Hours								
(volumes in veh/hr)	(80%	6 Shown	in Bracke	ets)	11	12-1	1-2	2-3	3-4	4-5	5-6	7-8
Approach Lanes		I	2 or m	ore	AM- 12							
Volume Level	100%	70%	100%	70%	PM							
Both Approaches on Manor Street	750 (600)	525	900 (720)	630	1051	1120	1154	1189	1206	1223	1223	1016
Highest Approach on Minor Street	75 (60)	53	100 (80)	70	308	340	311	283	276	293	297	301

Record 8 highest hours and the corresponding volumes in boxes provided. Condition is 100% satisfied if the minimum volumes are met for eight hours. Condition is 80% satisfied if parenthetical volumes are met for eight hours.


TRAFFIC SIGNAL WARRANT SUMMARY

City:		Engineer:	January 22, 2008								
County:	Lee	Date:	January 2	2, 2008							
Major Street: _ Minor Street: _	Westbound Corkscrew Road Miromar Outlets Inbound Left Turn	Lanes: 2 Lanes: 1	Critical Ap	proach Sp	eed:	45 mph					
Volume Level 1. Is the c 2. Is the ir	<u>Criteria</u> ritical speed of major street traffic > 70 km/h ntersection in a built-up area of isolated com	n (40 mph)? nmunity of <10,000	population?	⊠ Yes □ Yes		No No					
If Question	n 1 or 2 above is answered "yes", then use "	70%" volume level		⊠ 70%		100%					
WARRANT 2 -	FOUR-HOUR VEHICULAR VOLUME	,	Applicable:	⊠ Yes		No					
If all four poin	its lie above the appropriate line, then the warrant is sati	isfied.	Satisfied:	Yes		No					


Plot four volume combinations on the applicable figure below.

* Note:	115 vph applies as the lower threshold volume for a minor street approach with two or more lanes and
	80 vph applies as the lower threshold volume threshold for a minor street approach with one lane.

Note: 80 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 60 vph applies as the lower threshold volume threshold for a minor street approach with one lane.

TRAFFIC SIGNAL WARRANT SUMMARY

City: County:	ee							Er	ngine Da	er: _ te: _		D: Ja	avid anua	Plum ry 22	nme	er & <i>F</i>	ASSOC	iates	3
Major Street:V			orkscrew ts Inbou			rn			nes:			_ C	ritica	al App	oroa	ach S	peed	: 45	mph
1. Is the critica 2. Is the inters	al speed ection	in a bu	uilt-up ar	ea o	f isola	ted c	omn	nunity	of <	10,0		opu	latio	n?		Yes Yes 70%	 	No No)%
WARRANT 3 - PEA If all three criteria a then the warrant is Unusual condi	are fulfille satisfied	d or the	plotted po	int lie:	s above			riate lin		ation		oplic Satis	sfied	:	Ø	Yes Yes	0	No No	
use of w	•	,9					FIGU	IRE 40	C-3:	Crite	eria	for"	100%	%" Vc	olur	ne Le	vel		
- Outlot Man			_	60	0		1							DRE LAN					
Record hour when cri and the corresponding boxes provided.			me in	HIGH VOLUME APPROACH - VPH	\	1					>			LANES		WE			
Peak Ho	ur		MINOR STREET	E APP	0	\vdash				1			_			LANE &	LANE		
5-6 297	122	.3	N N	N 20	o	-			\rightarrow	\rightarrow				\geq					*150
Criteria 1. Delay on Minor		ch	1	H 10	0								Ś		<u> </u>				*100
Approach Lanes	1	2			400 5	500 6	00 7	00 80	0 900	100	0 11	00 12	00 13	300 14	00	1500 1	600 170	00 18	00
Delay Criteria*	4.0	5.0					1	MAJOR S	STREET	- TOT	AL OF	вотн	APPR	OACHE	S - V	PH	v		
Delay*			.,		150 vph a														ind
Fulfilled?: DYes	□ No																		
			ני ה		(C	ommun	FIGL ity Les	JRE 40 s than 10	C-4: 0	Crite opulati	ria f	or "7 above	'0%' 70 km/	hr (40 r	um(on Ma	el or Stree	t)	
2. Volume on Mind * (vehicles pe		ach		500		T	Т	-,		T			T	T		T			
Approach Lanes	1	2		H 400	-	+				4	ORM		ES & 2	OR MOR					-
Volume Criteria*	100	150	<u> </u>	ACH-		\downarrow		/		١,	2 OR	MORE L	ANES 8	L 1 LANE					
Volume *			STRE	300	, _	X				X				1 LANE		ANE	'	•	
Fulfilled?: □ Yes	□ No		MINOR STREET	20X	-	-	\rightarrow	_		-	_	_	1	-					
3. Total Enterin	g Volum	e	1	HIGH VOLUME APPROACH - VPH						+		7	4			\downarrow			-100
* (vehicles pe				I												+			•75
No. of Approaches	3	4			, L				L	700				100		1100	1200		300

MAJOR STREET - TOTAL OF BOTH APPROACHES - VPH

*Note: 100 vph applies as the lower threshold volume for a minor street approach with two or more lanes and

75 vph applies as the lower threshold volume threshold for a minor street approach with one lane.

Volume Criteria*

Volume *

Fulfilled?: □ Yes □ No

650

800

APPENDIX A MIROMAR OUTLETS CORKSCREW ROAD ACCESS EVALUATION INTERSECTION VOLUMES

MIROMAR OUTLETS **CORKSCREW ROAD ACCESS EVALUATION**

Project #07569

Prepared by:
DAVID PLUMMER & ASSOCIATES, INC.
1531 Hendry Street
Fort Myers, Florida 33901

September 7, 2007

				personal management	
N.T.S.		91 510 67	26 GIS 64 738 738 738 738 738 738 738 738 738 738	07569/04/0807	2
	Ben Hill Griffin Porkwoy	96 501 949	Stoneybrook Golf Blvd.		
	*	1294		HOUR	UMES
	424 Miromar Outlets (DIR)	1223	1312	EXISTING PEAK HOUR	TRAFFIC VOLUMES
	757	<u>1647</u>	1609 151	EXISTIN	TRAF
		=1	Design Center (RI/RO)		-
*		<u>1847</u>	1612 1542 70 70 70 PP		ALUATION
	- 622 -	1364 18	Z/Z - Z66	UTLETS	CORKSCREW ROAD ACCESS EVALUATION
			Sqmps bnuodhbound Ramps	MIROMAR OUTLETS	ROAD AC
		1784	1410	M	KSCREW
	891	320 148 364 364	Set 18 Southbound Ramps 27-1		COR
		Corkscrew R	1562	(e do

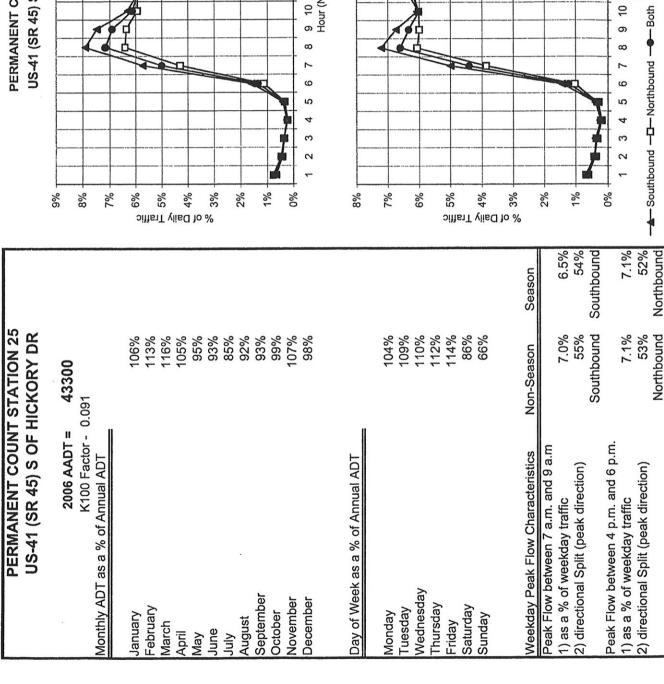
APPENDIX B ITE TRIP GENERATION 7TH EDITION HOURLY TRAFFIC VARIATION LUC 820 SHOPPING CENTER

Table 1
Hourly Variation in Shopping Center Traffic
Less Than 100,000 Square Feet Gross Leasable Area

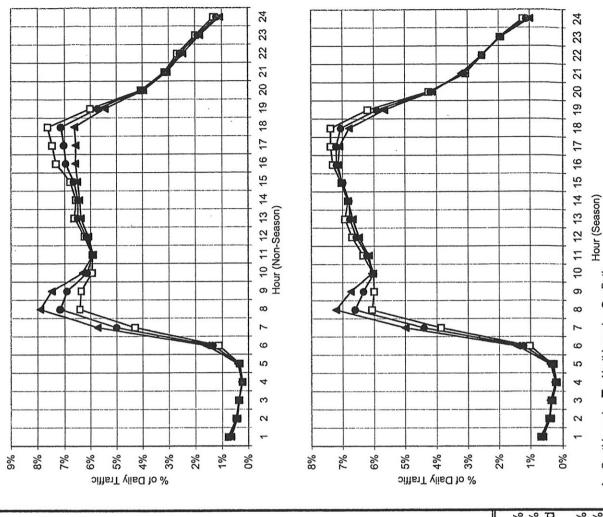
Time	Average	Weekday ^a	Average Saturday ^b		
	Percent of 24 Hour Entering Traffic	Percent of 24 Hour Exiting Traffic	Percent of 24 Hour Entering Traffic	Percent of 24 Hour Exiting Traffic	
10-11 a.m.	7.6	6.5	6.8	5.8	
11 a.m12 p.m.	7.6	8.4	8.8	8.9	
12–1 p.m.	7.6	8.2	9.4	8.8	
1–2 p.m.	6.9	7.5	10.0	10.1	
2-3 p.m.	9.0	7.8	9.7	8.4	
3–4 p.m.	9.6	9.5	10.3	9.6	
4–5 p.m.	9.7	10.4	10.7	- 10.7	
5–6 p.m.	10.3	11.0	9.4	8.7	
6–7 p.m.	7.4	8.3	7.3	8.3	
7–8 p.m.	5.4	5.3	5.0	5.7	
8–9 p.m.	4.2	4.3	3.2	3.9	
9–10 p.m.	1.9	1.8	2.0	3.3	

Source numbers - 95, 124; based on four studies.
 Source numbers - 95, 124; based on four studies.

	Table 2			
Hourly Variation in Shopping Center Traffic				
More Than 300,000 Squ	uare Feet Gross Leasable	rea		
 10/	A	A		


More Than 300,000 Square Feet Gross Leasable Area							
Time	Average Weekday ^a		Average Saturday ^b		Average Sunday ^c		
	Percent of	Percent of	Percent of	Percent of	Percent of	Percent of	
	24 Hour	24 Hour	24 Hour	24 Hour	24 Hour	24 Hour	
	Entering	Exiting	Entering	Exiting	Entering	Exiting	
	Traffic	Traffic	Traffic	Traffic	Traffic	Traffic	
10-11 a.m.	7.5	3.7	8.3	4.3	3.5	1.7	
11 a.m12 p.m.	8.6	5.9	10.9	6.9	9.4	3.5	
12-1 p.m.	9.5	7.9	11.9	8.9	15.3	6.3	
1–2 p.m.	8.7	8.2	12.5	10.4	17.3	11.0	
2–3 p.m.	7.9	8.8	12.4	12.0	16.4	14.4	
3–4 p.m.	7.7	8.9	11.2	12.9	13.8	16.2	
4–5 p.m.	8.2	9.1	9.2	13.4	9.8	16.8	
5–6 p.m.	8.3 ←	- 9.5	5.2	12.7	5.5	15.7	
6–7 p.m.	7.8	7.7	2.9	8.0	2.2	6.1	
7–8 p.m.	8.4	7.0	1.9	2.1	1.3	1.9	
8–9 p.m.	4.7	7.7	1.4	1.2	0.8	1.1	
9–10 p.m.	1.8	9.1	2.9	0.8	0.6	0.9	

^a Source numbers - 48, 73, 88, 124; based on seven studies.


^b Source numbers - 73, 88; based on three studies.

^c Source numbers - 88; based on two studies.

APPENDIX C LEE COUNTY 2006 TRAFFIC COUNT REPORT PERMANENT COUNT STATION DATA

PERMANENT COUNT STATION 25 US-41 (SR 45) S OF HICKORY DR

